Candidate Multilinear Maps
暫譯: 候選多線性映射
Sanjam Garg
- 出版商: Morgan & Claypool
- 出版日期: 2015-03-01
- 售價: $1,980
- 貴賓價: 9.5 折 $1,881
- 語言: 英文
- 頁數: 123
- 裝訂: Paperback
- ISBN: 1627055371
- ISBN-13: 9781627055376
海外代購書籍(需單獨結帳)
相關主題
商品描述
Cryptography to me is the ""black magic,"" of cryptographers, enabling tasks that often seem paradoxical or simply just impossible. Like the space explorers, we cryptographers often wonder, ""what are the boundaries of this world of black magic?"" This work lays one of the founding stones in furthering our understanding of these edges. We describe plausible lattice-based constructions with properties that approximate the sought after multilinear maps in hard-discrete-logarithm groups. The security of our constructions relies on seemingly hard problems in ideal lattices, which can be viewed as extensions of the assumed hardness of the NTRU function. These new constructions radically enhance our tool set and open a floodgate of applications. We present a survey of these applications. This book is based on my PhD thesis which was an extended version of a paper titled ""Candidate Multilinear Maps from Ideal Lattices"" co-authored with Craig Gentry and Shai Halevi. This paper was originally published at EUROCRYPT 2013. The aim of cryptography is to design primitives and protocols that withstand adversarial behavior. Information theoretic cryptography, how-so-ever desirable, is extremely restrictive and most non-trivial cryptographic tasks are known to be information theoretically impossible. In order to realize sophisticated cryptographic primitives, we forgo information theoretic security and assume limitations on what can be efficiently computed. In other words we attempt to build secure systems conditioned on some computational intractability assumption such as factoring, discrete log, decisional Diffie-Hellman, learning with errors, and many more. In this work, based on the 2013 ACM Doctoral Dissertation Award-winning thesis, we put forth new plausible lattice-based constructions with properties that approximate the sought after multilinear maps. The multilinear analog of the decision Diffie-Hellman problem appears to be hard in our construction, and this allows for their use in cryptography. These constructions open doors to providing solutions to a number of important open problems.
商品描述(中文翻譯)
對我來說,加密學是密碼學家的「黑魔法」,使得那些看似矛盾或簡直不可能的任務得以實現。就像太空探索者一樣,我們這些密碼學家常常想知道,「這個黑魔法的世界的邊界在哪裡?」這項工作為我們進一步理解這些邊界奠定了基礎。我們描述了可行的基於格的構造,具有接近於在困難離散對數群中所尋求的多線性映射的特性。我們的構造的安全性依賴於理想格中看似困難的問題,這可以被視為對NTRU函數假設的困難性的擴展。這些新的構造徹底增強了我們的工具集,並開啟了應用的洪流。我們將介紹這些應用的調查。本書基於我的博士論文,該論文是與Craig Gentry和Shai Halevi共同撰寫的題為「來自理想格的候選多線性映射」的論文的擴展版本。這篇論文最初發表於EUROCRYPT 2013。加密學的目標是設計能夠抵抗對抗行為的原語和協議。信息理論加密學,無論多麼理想,都是極其限制性的,且大多數非平凡的加密任務被認為在信息理論上是不可能的。為了實現複雜的加密原語,我們放棄了信息理論的安全性,並假設在有效計算上存在限制。換句話說,我們試圖在某些計算不可解的假設下構建安全系統,例如因數分解、離散對數、決策Diffie-Hellman、帶錯誤學習等。基於2013年ACM博士論文獎獲獎論文的這項工作,我們提出了新的可行的基於格的構造,具有接近於所尋求的多線性映射的特性。在我們的構造中,決策Diffie-Hellman問題的多線性類比似乎是困難的,這使得它們可以在加密學中使用。這些構造為解決許多重要的未解決問題提供了可能的解決方案。