Non-Volatile In-Memory Computing by Spintronics (Synthesis Lectures on Emerging Engineering Technologies)
暫譯: 基於自旋電子學的非揮發性內存計算(新興工程技術綜合講座)
Hao Yu, Leibin Ni, Yuhao Wang
- 出版商: Morgan & Claypool
- 出版日期: 2016-12-02
- 售價: $2,250
- 貴賓價: 9.5 折 $2,138
- 語言: 英文
- 頁數: 162
- 裝訂: Paperback
- ISBN: 1627052941
- ISBN-13: 9781627052948
海外代購書籍(需單獨結帳)
相關主題
商品描述
Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.
商品描述(中文翻譯)
超級計算需要重新檢視現有的硬體平台,以支援密集的數據導向計算。由於主要的瓶頸來自記憶體,我們在本書中旨在開發一個能效高的內存計算平台。首先,介紹自旋轉移力矩磁隧道接合(spin-transfer torque magnetic tunnel junction)和軌道記憶體(racetrack memory)的模型。接著,我們展示自旋電子學(spintronics)可能成為未來數據導向計算在儲存、邏輯和互連方面的候選技術。因此,通過利用自旋電子學,基於內存的計算已應用於數據加密和機器學習。內存中的AES、Simon密碼以及互連的實現將詳細說明。此外,本書還闡述了基於內存的機器學習和人臉識別。