Automated Machine Learning in Action
暫譯: 自動化機器學習實戰

Song, Qingquan, Jin, Haifeng, Hu, Xia

  • 出版商: Manning
  • 出版日期: 2022-06-01
  • 定價: $2,100
  • 售價: 9.0$1,890
  • 語言: 英文
  • 頁數: 336
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1617298050
  • ISBN-13: 9781617298059
  • 相關分類: Machine Learning
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Optimize every stage of your machine learning pipelines with powerful automation components and cutting-edge tools like AutoKeras and KerasTuner.

In Automated Machine Learning in Action you will learn how to:
 

- Improve a machine learning model by automatically tuning its hyperparameters
- Pick the optimal components for creating and improving your pipelines
- Use AutoML toolkits such as AutoKeras and KerasTuner
- Design and implement search algorithms to find the best component for your ML task
- Accelerate the AutoML process with data-parallel, model pretraining, and other techniques


Automated Machine Learning in Action reveals how you can automate the burdensome elements of designing and tuning your machine learning systems. It’s written in a math-lite and accessible style, and filled with hands-on examples for applying AutoML techniques to every stage of a pipeline. AutoML can even be implemented by machine learning novices! If you’re new to ML, you’ll appreciate how the book primes you on machine learning basics. Experienced practitioners will love learning how automated tools like AutoKeras and KerasTuner can create pipelines that automatically select the best approach for your task, or tune any customized search space with user-defined hyperparameters, which removes the burden of manual tuning.

about the technology

Machine learning tasks like data pre-processing, feature selection, and model optimization can be time-consuming and highly technical. Automated machine learning, or AutoML, applies pre-built solutions to these chores, eliminating errors caused by manual processing. By accelerating and standardizing work throughout the ML pipeline, AutoML frees up valuable data scientist time and enables less experienced users to apply machine learning effectively.

about the book

Automated Machine Learning in Action shows you how to save time and get better results using AutoML. As you go, you’ll learn how each component of an ML pipeline can be automated with AutoKeras and KerasTuner. The book is packed with techniques for automating classification, regression, data augmentation, and more. The payoff: Your ML systems will be able to tune themselves with little manual work.

Product description

Review

“Automating automation itself is a new concept and this book does justice to it in terms of explaining the concepts, sharing real world advancements, use cases and research related to the topic. “ Satej KumarSahu

“A book with a lot of promise, covering a topic that's like to become hot in the next year or so. Read this now, and get ahead of the curve!” RichardVaughan

“A nice introduction to AutoML, its ambitions, and challenges bothin theory and in practice.” Alain Couniot

“Helps you to clearly understand the process of Machine Learning automation. The examples are clear, concise, and applicable to the real world.”Walter Alexander Mata López

“The author's friendly style makes novices feel ready to try outAutoML tools.” Gaurav Kumar Leekha

“A great book to take your machine learning skills to the next level.” Harsh Raval

“An impressive effort by the authors to break down a complex MLtopic into understandable chunks.” Venkatesh RajagopalTable of Contents
 

商品描述(中文翻譯)

優化您的機器學習管道的每個階段,使用強大的自動化元件和尖端工具,如 AutoKeras 和 KerasTuner。



自動化機器學習實戰中,您將學習如何:

 

- 通過自動調整超參數來改善機器學習模型

- 選擇最佳元件以創建和改進您的管道

- 使用 AutoML 工具包,如 AutoKeras 和 KerasTuner

- 設計和實現搜索算法,以找到最適合您機器學習任務的元件

- 通過數據並行、模型預訓練和其他技術加速 AutoML 過程



自動化機器學習實戰揭示了如何自動化設計和調整機器學習系統的繁瑣元素。這本書以輕鬆的數學風格撰寫,並充滿了將 AutoML 技術應用於管道每個階段的實用範例。即使是機器學習新手也能實施 AutoML!如果您是機器學習的新手,您會欣賞這本書如何讓您了解機器學習的基本概念。經驗豐富的從業者將喜歡學習如何使用像 AutoKeras 和 KerasTuner 這樣的自動化工具來創建自動選擇最佳方法的管道,或使用用戶定義的超參數調整任何自定義搜索空間,從而減輕手動調整的負擔。

關於技術

機器學習任務,如數據預處理、特徵選擇和模型優化,可能耗時且技術性強。自動化機器學習(AutoML)將預建解決方案應用於這些繁瑣的工作,消除手動處理所造成的錯誤。通過加速和標準化整個機器學習管道的工作,AutoML 釋放了寶貴的數據科學家時間,並使經驗較少的用戶能夠有效地應用機器學習。

關於本書

自動化機器學習實戰展示了如何使用 AutoML 節省時間並獲得更好的結果。在過程中,您將學習如何使用 AutoKeras 和 KerasTuner 自動化機器學習管道的每個元件。這本書充滿了自動化分類、回歸、數據增強等技術。其回報是:您的機器學習系統將能夠在幾乎不需要手動工作的情況下自我調整。

產品描述

評論

“自動化自動化本身是一個新概念,這本書在解釋概念、分享現實世界的進展、用例和相關研究方面做得很好。” Satej KumarSahu

“一本充滿潛力的書,涵蓋了一個在未來一年內可能會變得熱門的主題。現在就讀這本書,走在潮流之前!” RichardVaughan

“對 AutoML 的良好介紹,涵蓋了其雄心和理論及實踐中的挑戰。” Alain Couniot

“幫助您清楚理解機器學習自動化的過程。範例清晰、簡潔,並適用於現實世界。” Walter Alexander Mata López

“作者友好的風格讓新手感到準備好嘗試 AutoML 工具。” Gaurav Kumar Leekha

“一本很棒的書,可以將您的機器學習技能提升到下一個層次。” Harsh Raval

“作者們的努力令人印象深刻,將複雜的機器學習主題分解為易於理解的部分。” Venkatesh Rajagopal

作者簡介

Qingquan Song, Haifeng Jin, and Dr. Xia "Ben" Hu are the creators of the AutoKeras automated deep learning library. Qingquan and Haifeng are PhD students at Texas A&M University, and have both published papers at major data mining conferences and journals. Dr. Hu is an associate professor at Texas A&M University in the Department of Computer Science and Engineering, whose work has been utilized by TensorFlow, Apple, and Bing.

作者簡介(中文翻譯)

Qingquan Song、Haifeng Jin 和 Dr. Xia "Ben" Hu 是 AutoKeras 自動化深度學習庫的創建者。Qingquan 和 Haifeng 是德州農工大學的博士生,並且都在主要的資料挖掘會議和期刊上發表過論文。Dr. Hu 是德州農工大學計算機科學與工程系的副教授,他的研究成果已被 TensorFlow、Apple 和 Bing 所採用。

目錄大綱

Table of Contents
PART 1 FUNDAMENTALS OF AUTOML
1 From machine learning to automated machine learning
2 The end-to-end pipeline of an ML project
3 Deep learning in a nutshell
PART 2 AUTOML IN PRACTICE
4 Automated generation of end-to-end ML solutions
5 Customizing the search space by creating AutoML pipelines
6 AutoML with a fully customized search space
PART 3 ADVANCED TOPICS IN AUTOML
7 Customizing the search method of AutoML
8 Scaling up AutoML
9 Wrapping up

目錄大綱(中文翻譯)

Table of Contents

PART 1 FUNDAMENTALS OF AUTOML

1 From machine learning to automated machine learning

2 The end-to-end pipeline of an ML project

3 Deep learning in a nutshell

PART 2 AUTOML IN PRACTICE

4 Automated generation of end-to-end ML solutions

5 Customizing the search space by creating AutoML pipelines

6 AutoML with a fully customized search space

PART 3 ADVANCED TOPICS IN AUTOML

7 Customizing the search method of AutoML

8 Scaling up AutoML

9 Wrapping up