買這商品的人也買了...
-
$990$891 -
$690$538 -
$590$502 -
$1,200$948 -
$580$435 -
$680$578 -
$780$616 -
$520$411 -
$400$340 -
$780$616 -
$360$284 -
$980$774 -
$520$442 -
$380$300 -
$620$484 -
$680$537 -
$480$379 -
$560$437 -
$699$594 -
$420$332 -
$580$458 -
$500$395 -
$999$849 -
$480$379 -
$590$502
相關主題
商品描述
Data accumulated about customers, products, and website users can not only help interpret the past, it can help predict the future! Probabilistic programming is a programming paradigm in which code models are used to draw probabilistic inferences from data. By applying specialized algorithms, programs assign degrees of probability to conclusions and make it possible to forecast future events like sales trends, computer system failures, experimental outcomes, and other critical concerns.
Practical Probabilistic Programming explains how to use the PP paradigm to model application domains and express those probabilistic models in code. It shows how to use the Figaro language to build a spam filter and apply Bayesian and Markov networks to diagnose computer system data problems and recover digital images. Then it dives into the world of probabilistic inference, where algorithms help turn the extended prediction of social media usage into a science. The book covers functional-style programming for text analysis and using object-oriented models to predict social phenomena like the spread of tweets, and using open universe models to model real-life social media usage. It also teaches the principles of algorithms such as belief propagation and Markov chain Monte Carlo. The book closes out with modeling dynamic systems by using a product cycle as its main example and explains how probabilistic models can help in the decision-making process for an ad campaign.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
商品描述(中文翻譯)
累積的有關顧客、產品和網站使用者的數據不僅可以幫助解釋過去,還可以幫助預測未來!概率編程是一種編程範式,其中使用代碼模型從數據中進行概率推斷。通過應用專門的算法,程序將概率程度分配給結論,並能夠預測未來事件,如銷售趨勢、計算機系統故障、實驗結果和其他重要問題。
《實用概率編程》解釋了如何使用概率編程範式來建模應用領域並將這些概率模型表達為代碼。它展示了如何使用Figaro語言構建垃圾郵件過濾器,並應用貝葉斯和馬爾可夫網絡來診斷計算機系統數據問題和恢復數字圖像。然後,它深入探討了概率推斷的世界,其中算法幫助將社交媒體使用的擴展預測變成一門科學。本書涵蓋了用於文本分析的函數式編程,以及使用面向對象的模型來預測社會現象,如推文的傳播,以及使用開放宇宙模型來建模現實生活中的社交媒體使用。它還教授了信念傳播和馬爾可夫鏈蒙特卡羅等算法的原則。本書以產品生命周期作為主要示例,介紹了如何使用概率模型來幫助廣告活動的決策過程。
購買印刷版書籍包括免費的PDF、Kindle和ePub格式的電子書,由Manning Publications提供。