Statistical Multisource-Multitarget Information Fusion
暫譯: 統計多源多目標資訊融合

Ronald P. S. Mahler

  • 出版商: Artech House Publish
  • 出版日期: 2007-03-31
  • 售價: $7,440
  • 貴賓價: 9.5$7,068
  • 語言: 英文
  • 裝訂: Hardcover
  • ISBN: 1596930926
  • ISBN-13: 9781596930926
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Description:

This comprehensive resource provides you with an in-depth understanding of finite-set statistics (FISST) ? a recently developed method which unifies much of information fusion under a single probabilistic, in fact Bayesian, paradigm. The book helps you master FISST concepts, techniques, and algorithms, so you can use FISST to address real-world challenges in the field. You learn how to model, fuse, and process highly disparate information sources, and detect and track non-cooperative individual/platform groups and conventional non-cooperative targets.

You find a rigorous Bayesian unification for many aspects of expert systems theory. Moreover, the book presents systematic integral and differential calculus for multisource-multitarget problems, providing a methodology for devising rigorous new techniques. This accessible and detailed book is supported with over 3,000 equations, 90 clear examples, 70 explanatory figures, and 60 exercises with solutions.

 

Table of Contents:

Unified Single-Target Multisource Integration ? Conventional Single-Sensor, Single-Target Tracking. General Data Modeling. Random Set Uncertainty Representations. Unambiguously Generated Ambiguous (UGA) Measurements. Ambiguously Generated Ambiguous (AGA) Measurements. Ambiguously Generated Unambiguous (AGU) Measurements. Ambiguous State-Estimates. Finite-Set Measurements. Unified Multitarget Multisource Integration ? Conventional Multisource-Multitarget Information Fusion. Multitarget Differential and Integral Calculus. Multitarget Likelihood Functions. Multitarget Markov Densities. The Multisource-Multitarget Bayes Filter. Approximate Multitarget Filtering ? Multitarget Particle Approximation. Multitarget-Moment Approximation.? Multitarget Multi-Bernoulli Approximation. Appendices.

商品描述(中文翻譯)

描述:
這本綜合性資源提供您對有限集統計(Finite-set statistics, FISST)的深入理解——這是一種最近開發的方法,將許多信息融合統一在一個單一的概率框架下,實際上是貝葉斯(Bayesian)範式。這本書幫助您掌握FISST的概念、技術和算法,使您能夠利用FISST來解決該領域中的現實挑戰。您將學習如何建模、融合和處理高度不同的信息來源,並檢測和追蹤非合作的個體/平台群體及傳統的非合作目標。

您會發現對專家系統理論許多方面的嚴謹貝葉斯統一。此外,本書還針對多來源-多目標問題提供系統的積分和微分計算,提供了一種設計嚴謹新技術的方法論。這本易於理解且詳細的書籍包含超過3,000個方程式、90個清晰的例子、70個解釋性圖形和60個附有解答的練習題。

目錄:
統一單目標多來源整合——傳統單傳感器、單目標追蹤。一般數據建模。隨機集不確定性表示。明確生成的模糊(UGA)測量。模糊生成的模糊(AGA)測量。模糊生成的明確(AGU)測量。模糊狀態估計。有限集測量。統一多目標多來源整合——傳統多來源-多目標信息融合。多目標微分和積分計算。多目標似然函數。多目標馬可夫密度。多來源-多目標貝葉斯濾波器。近似多目標過濾——多目標粒子近似。多目標矩近似。多目標多伯努利近似。附錄。