買這商品的人也買了...
-
$1,260CCNA Certification Library (CCNA Self-Study, exam #640-801), 6/e
-
$450$356 -
$760$600 -
$880$695 -
$450$356 -
$690$587 -
$580$458 -
$650$507 -
$450$356 -
$480$379 -
$1,540$1,463 -
$750CompTIA Security+ Study Guide: Exam SY0-101, 3/e (Paperback)
-
$590$466 -
$580$458 -
$580$458 -
$690$587 -
$350$277 -
$1,410$1,340 -
$620$490 -
$720$612 -
$750$593 -
$600$480 -
$490$387 -
$1,815$1,724 -
$580$458
相關主題
商品描述
Description
Presents self-contained, in-depth coverage of the theory and algorithms needed for elliptic and hyperelliptic curve cryptography Provides algorithms suitable for immediate implementation along with deep mathematical detail Treats both generic and special cases of elliptic curves and Jacobian varieties of hyperelliptic curves Discusses the advantages and disadvantages of different coordinate systems Provides a complete overview of the efficient construction of curve-based cryptosystems
The discrete logarithm problem based on elliptic and hyperelliptic curves has gained a lot of popularity as a cryptographic primitive. The main reason is that no subexponential algorithm for computing discrete logarithms on small genus curves is currently available, except in very special cases. Therefore curve-based cryptosystems require much smaller key sizes than RSA to attain the same security level. This makes them particularly attractive for implementations on memory-restricted devices like smart cards and in high-security applications.
The Handbook of Elliptic and Hyperelliptic Curve Cryptography introduces the theory and algorithms involved in curve-based cryptography. After a very detailed exposition of the mathematical background, it provides ready-to-implement algorithms for the group operations and computation of pairings. It explores methods for point counting and constructing curves with the complex multiplication method and provides the algorithms in an explicit manner. It also surveys generic methods to compute discrete logarithms and details index calculus methods for hyperelliptic curves. For some special curves the discrete logarithm problem can be transferred to an easier one; the consequences are explained and suggestions for good choices are given. The authors present applications to protocols for discrete-logarithm-based systems (including bilinear structures) and explain the use of elliptic and hyperelliptic curves in factorization and primality proving. Two chapters explore their design and efficient implementations in smart cards. Practical and theoretical aspects of side-channel attacks and countermeasures and a chapter devoted to (pseudo-)random number generation round off the exposition.
The broad coverage of all- important areas makes this book a complete handbook of elliptic and hyperelliptic curve cryptography and an invaluable reference to anyone interested in this exciting field.
Table of Contents
Preface
Introduction to Public-Key Cryptography
MATHEMATICAL BACKGROUND
Algebraic Background
Background on p-adic Numbers
Background on Curves and Jacobians
Varieties Over Special Fields
Background on Pairings
Background on Weil Descent
Cohomological Background on Point Counting
ELEMENTARY ARITHMETIC
Exponentiation
Integer Arithmetic
Finite Field Arithmetic
Arithmetic of p-adic Numbers
ARITHMETIC OF CURVES
Arithmetic of Elliptic Curves
Arithmetic of Hyperelliptic Curves
Arithmetic of Special Curves
Implementation of Pairings
POINT COUNTING
Point Counting on Elliptic and Hyperelliptic Curves
Complex Multiplication
COMPUTATION OF DISCRETE LOGARITHMS
Generic Algorithms for Computing Discrete Logarithms
Index Calculus
Index Calculus for Hyperelliptic Curves
Transfer of Discrete Logarithms
APPLICATIONS
Algebraic Realizations of DL Systems
Pairing-Based Cryptography
Compositeness and Primality Testing-Factoring
REALIZATIONS OF DL SYSTEMS
Fast Arithmetic Hardware
Smart Cards
Practical Attacks on Smart Cards
Mathematical Countermeasures Against Side-Channel Attacks
Random Numbers-Generation and Testing
REFERENCES
商品描述(中文翻譯)
**書籍描述**
- 提供有關橢圓曲線和超橢圓曲線密碼學所需的理論和演算法的獨立深入探討
- 提供適合立即實施的演算法,並附有深入的數學細節
- 涉及橢圓曲線和超橢圓曲線的雅可比變種的通用和特殊情況
- 討論不同坐標系統的優缺點
- 提供基於曲線的密碼系統高效構建的完整概述
基於橢圓曲線和超橢圓曲線的離散對數問題作為一種密碼學原語,已獲得廣泛關注。主要原因是目前沒有針對小 genus 曲線計算離散對數的次指數演算法,除非在非常特殊的情況下。因此,基於曲線的密碼系統所需的密鑰大小比 RSA 小得多,以達到相同的安全級別。這使得它們在記憶體受限的設備(如智能卡)和高安全性應用中尤其具有吸引力。
《橢圓曲線和超橢圓曲線密碼學手冊》介紹了與基於曲線的密碼學相關的理論和演算法。在詳細闡述數學背景後,提供了可立即實施的群運算和配對計算的演算法。它探討了點計數和使用複數乘法方法構建曲線的方法,並以明確的方式提供演算法。它還調查了計算離散對數的通用方法,並詳細說明了超橢圓曲線的指數微積分方法。對於某些特殊曲線,離散對數問題可以轉化為更簡單的問題;其後果將被解釋並提供良好選擇的建議。作者展示了基於離散對數的系統(包括雙線性結構)協議的應用,並解釋了橢圓曲線和超橢圓曲線在因式分解和質數證明中的使用。兩章探討了它們在智能卡中的設計和高效實現。側信道攻擊和對策的實際和理論方面,以及專門針對(偽)隨機數生成的一章,圓滿結束了這一闡述。
對所有重要領域的廣泛涵蓋使本書成為橢圓曲線和超橢圓曲線密碼學的完整手冊,並成為任何對這一激動人心的領域感興趣的人的寶貴參考。
**目錄**
前言
公鑰密碼學介紹
數學背景
代數背景
p-進數背景
曲線和雅可比的背景
特殊域上的變種
配對的背景
Weil 降階的背景
點計數的共同背景
基本算術
指數運算
整數算術
有限域算術
p-進數的算術
曲線的算術
橢圓曲線的算術
超橢圓曲線的算術
特殊曲線的算術
配對的實現
點計數
橢圓曲線和超橢圓曲線的點計數
複數乘法
離散對數的計算
計算離散對數的通用演算法
指數微積分
超橢圓曲線的指數微積分
離散對數的轉移
應用
離散對數系統的代數實現
基於配對的密碼學
合成性和質數測試-因式分解
離散對數系統的實現
快速算術硬體
智能卡
對智能卡的實際攻擊
針對側信道攻擊的數學對策
隨機數-生成和測試
參考文獻