Make Your Own Neural Network (Paperback)
Tariq Rashid
- 出版商: CreateSpace Independ
- 出版日期: 2016-03-31
- 售價: $1,850
- 貴賓價: 9.5 折 $1,758
- 語言: 英文
- 頁數: 222
- 裝訂: Paperback
- ISBN: 1530826608
- ISBN-13: 9781530826605
-
相關分類:
DeepLearning
-
相關翻譯:
類神經網路實戰:使用 Python (Make Your Own Neural Network) (繁中版)
Python 神經網絡編程 (Make Your Own Neural Network) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$350$315 -
$580$522 -
$500$450 -
$650$618 -
$450$356 -
$400$360 -
$320$288 -
$1,600$1,520 -
$1,362Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)
-
$780$616 -
$1,425Motors for Makers: A Guide to Steppers, Servos, and Other Electrical Machines(Paperback)
-
$202深度學習:方法及應用
-
$490$417 -
$490$417 -
$580$458 -
$221Python 機器學習及實踐 --- 從零開始通往 Kaggle 競賽之路
-
$520$411 -
$1,617Deep Learning (Hardcover)
-
$403Tensorflow:實戰Google深度學習框架
-
$403面向機器學習的自然語言標註 (Natural language annotation for macbhine learning)
-
$480$379 -
$500$390 -
$780$616 -
$560$420 -
$500$390
相關主題
商品描述
A gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
商品描述(中文翻譯)
一本輕鬆深入探索神經網絡數學原理的旅程,並使用Python程式語言製作自己的神經網絡。神經網絡是深度學習和人工智慧的關鍵元素,如今已經能夠實現一些令人印象深刻的成就。然而,對於神經網絡的實際運作方式,了解的人卻很少。本指南將帶領您輕鬆愉快地進行一段旅程,從非常簡單的概念開始,逐步建立對神經網絡運作原理的理解。您不需要超出中學數學範圍,並且還包含了易於理解的微積分介紹。本指南的目標是讓盡可能多的讀者能夠理解神經網絡,因為已經有足夠多的高級讀物了!您將學習使用Python編程並製作自己的神經網絡,教它識別人類手寫數字,並且能夠達到專業開發的網絡的水平。第一部分是關於概念的介紹。我們以豐富的插圖和例子輕鬆介紹神經網絡的數學概念。第二部分是實踐的部分。我們介紹了流行且易於學習的Python程式語言,並逐步建立一個能夠學習識別人類手寫數字的神經網絡,輕鬆使其達到專業人士製作的網絡的水平。第三部分進一步擴展了這些概念。我們使用簡單的概念和程式碼將我們的神經網絡的性能提升到行業領先的98%,測試您自己的手寫字體,深入了解神秘的神經網絡思維,甚至在樹莓派上實現所有功能。本書中的所有程式碼都經過在樹莓派Zero上的測試。