Introduction to Abelian Model Structures and Gorenstein Homological Dimensions
暫譯: 阿貝爾模型結構與戈倫斯坦同調維度導論

Marco A. P. Bullones

  • 出版商: CRC
  • 出版日期: 2016-08-17
  • 售價: $7,140
  • 貴賓價: 9.5$6,783
  • 語言: 英文
  • 頁數: 370
  • 裝訂: Hardcover
  • ISBN: 1498725341
  • ISBN-13: 9781498725347
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure.

The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories.

As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.

商品描述(中文翻譯)

《阿貝爾模型結構與戈倫斯坦同調維度導論》提供了一個研究同調代數與同倫代數之間關係的起點,這是一個非常活躍的數學分支。本書展示了如何通過構造一對與特定同調維度相關的兼容完整共扭對來獲得同調代數中的新模型結構,然後應用 Hovey 對應來生成阿貝爾模型結構。

本書的第一部分介紹了在範疇論中最常用的普遍構造的定義和符號。接下來的部分呈現了在 Grothedieck 類別中 Eklof 和 Trlifaj 定理的證明,並涵蓋了 M. Hovey 的工作,該工作將共扭對和模型類別的理論聯繫起來。最後兩部分研究模型結構與經典及戈倫斯坦同調維度之間的關係,並探討被稱為戈倫斯坦類別的特殊類型的 Grothendieck 類別。

本書力求自成體系,呈現相對同調代數和模型類別理論中的新結果。作者還使用不同的論證或從教學的角度重新證明了一些已建立的結果。此外,他還證明了一些在文獻中難以找到的民間結果。