Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2/e (Paperback)
Bruce, Peter, Bruce, Andrew, Gedeck, Peter
- 出版商: O'Reilly
- 出版日期: 2020-06-16
- 定價: $2,760
- 售價: 9.5 折 $2,622
- 貴賓價: 9.0 折 $2,484
- 語言: 英文
- 頁數: 368
- 裝訂: Quality Paper - also called trade paper
- ISBN: 149207294X
- ISBN-13: 9781492072942
-
相關分類:
Python、程式語言、R 語言、機率統計學 Probability-and-statistics
-
相關翻譯:
資料科學家的實用統計學 : 運用 R 和 Python 學習 50+個必學統計概念, 2/e (Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2/e) (繁中版)
數據科學中的實用統計學(第2版) (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$3,500$3,325 -
$2,993The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e (Hardcover)
-
$1,550$1,473 -
$2,250$2,138 -
$1,962Introduction to Machine Learning with Python: A Guide for Data Scientists (Paperback)
-
$990Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2/e (Paperback)
-
$620$484 -
$680$646 -
$2,070Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops (Paperback)
-
$1,520$1,440 -
$1,460$1,387 -
$2,170$2,062 -
$2,650$2,597 -
$2,115Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications (Paperback)
-
$2,223$2,106 -
$880$695 -
$2,594$2,457 -
$600$450 -
$474$450 -
$520$390 -
$560$437 -
$860$679 -
$750$593 -
$800$632 -
$539$512
相關主題
商品描述
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide--now including examples in Python as well as R--explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.
Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format.
With this updated edition, you'll dive into:
- Exploratory data analysis
- Data and sampling distributions
- Statistical experiments and significance testing
- Regression and prediction
- Classification
- Statistical machine learning
- Unsupervised learning
商品描述(中文翻譯)
統計方法是數據科學的重要組成部分,然而很少有數據科學家接受過正式的統計培訓。關於基本統計的課程和書籍很少從數據科學的角度來探討這個主題。這本實用指南的第二版(現在包括Python和R的示例)解釋了如何將各種統計方法應用於數據科學,告訴您如何避免誤用,並給出了哪些是重要的,哪些是不重要的建議。
許多數據科學家使用統計方法,但缺乏更深入的統計觀點。如果您熟悉R或Python編程語言,並且對統計有一些了解,但想要學習更多,這本快速參考書以易於理解的格式填補了這一差距。
在這本更新的第二版中,您將深入探討以下內容:
- 探索性數據分析
- 數據和抽樣分佈
- 統計實驗和顯著性檢驗
- 迴歸和預測
- 分類
- 統計機器學習
- 非監督學習
作者簡介
Peter Bruce is the Founder and Chief Academic Officer of the Institute for Statistics Education at Statistics.com, which offers about 80 courses in statistics and analytics, roughly half of which are aimed at data scientists. He has authored or co-authored several books in statistics and analytics, and he earned his Bachelor's degree at Princeton, and Masters degrees at Harvard and the University of Maryland.
Andrew Bruce, Principal Research Scientist at Amazon, has over 30 years of experience in statistics and data science in academia, government and business. The co-author of Applied Wavelet Analysis with S-PLUS, he earned his bachelor's degree at Princeton, and PhD in statistics at the University of Washington
Peter Gedeck, Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. Co-author of Data Mining for Business Analytics, he earned PhD's in Chemistry from the University of Erlangen-Nürnberg in Germany and Mathematics from Fernuniversität Hagen, Germany
作者簡介(中文翻譯)
Peter Bruce是統計教育研究所Statistics.com的創辦人和首席學術官,該研究所提供約80門統計和分析課程,其中大約一半針對數據科學家。他是統計和分析領域的多本書籍的作者或合著者,並在普林斯頓大學獲得學士學位,並在哈佛大學和馬里蘭大學獲得碩士學位。
Andrew Bruce是亞馬遜的首席研究科學家,擁有30多年的學術界、政府和商業界的統計和數據科學經驗。他是《應用小波分析與S-PLUS》的合著者,在普林斯頓大學獲得學士學位,並在華盛頓大學獲得統計學博士學位。
Peter Gedeck是Collaborative Drug Discovery的高級數據科學家,專注於開發機器學習算法來預測藥物候選物的生物和物理化學性質。他是《商業分析的數據挖掘》的合著者,在德國的埃爾朗根-紐倫堡大學獲得化學博士學位,並在德國的Fernuniversität Hagen獲得數學博士學位。