Data Science on the Google Cloud Platform: Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning
Valliappa Lakshmanan
- 出版商: O'Reilly
- 出版日期: 2018-01-23
- 定價: $2,180
- 售價: 5.0 折 $1,090
- 語言: 英文
- 頁數: 410
- 裝訂: Paperback
- ISBN: 1491974567
- ISBN-13: 9781491974568
-
相關分類:
Google Cloud、Machine Learning、Data Science
-
相關翻譯:
基於雲計算的數據科學 (簡中版)
-
其他版本:
Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning, 2/e (Paperback)
買這商品的人也買了...
-
$940$893 -
$1,000$950 -
$1,000$950 -
$640$608 -
$1,000$950 -
$520$442 -
$520$442 -
$520$442 -
$505圖解Spark:核心技術與案例實戰
-
$580$458 -
$520$442 -
$990Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2/e (Paperback)
-
$403AWS Lambda 實戰 : 開發事件驅動的無服務器應用程序 (AWS Lambda in Action: Event-Driven Serverless Applications)
-
$254亞馬遜 AWS 雲基礎與實戰
-
$1,670$1,587 -
$474$450 -
$414$393 -
$680$578 -
$419$398 -
$505機器學習即服務:將 Python 機器學習創意快速轉變為雲端 Web 應用程序 (Monetizing Machine Learning: Quickly Turn Python ML Ideas into Web Applications on the Serverless Cloud)
-
$1,650$1,568 -
$454$427 -
$653AWS 高級網絡官方學習指南 (專項領域) (AWS Certified Advanced Networking Official Study Guide: Specialty Exam)
-
$414$393 -
$539$512
相關主題
商品描述
Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches.
Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science.
You’ll learn how to:
- Automate and schedule data ingest, using an App Engine application
- Create and populate a dashboard in Google Data Studio
- Build a real-time analysis pipeline to carry out streaming analytics
- Conduct interactive data exploration with Google BigQuery
- Create a Bayesian model on a Cloud Dataproc cluster
- Build a logistic regression machine-learning model with Spark
- Compute time-aggregate features with a Cloud Dataflow pipeline
- Create a high-performing prediction model with TensorFlow
- Use your deployed model as a microservice you can access from both batch and real-time pipelines
商品描述(中文翻譯)
學習如何在Google Cloud Platform (GCP) 上應用複雜的統計和機器學習方法解決現實世界的問題是多麼容易。這本實踐指南向進入數據科學領域的開發人員展示了如何在GCP上實施端到端的數據流程,使用統計和機器學習方法和工具。在本書的過程中,您將通過採用各種數據科學方法來完成一個示例業務決策。
通過在GCP上實施這些統計和機器學習解決方案,並發現這個平台提供了一種轉型和更具協作性的數據科學方式。
您將學習如何:
- 使用App Engine應用程序自動化和安排數據輸入
- 在Google Data Studio中創建和填充儀表板
- 構建實時分析流程以進行流式分析
- 使用Google BigQuery進行交互式數據探索
- 在Cloud Dataproc集群上創建貝葉斯模型
- 使用Spark構建邏輯回歸機器學習模型
- 使用Cloud Dataflow流程計算時間聚合特徵
- 使用TensorFlow創建高性能預測模型
- 將部署的模型用作可以從批處理和實時流程訪問的微服務