買這商品的人也買了...
-
$500$450 -
$420$332 -
$880$695 -
$780$616 -
$580$452 -
$850$808 -
$520$406 -
$620$490 -
$780$616 -
$360$284 -
$380$323 -
$690$538 -
$1,887$1,665 -
$450$356 -
$490$382 -
$360$284 -
$301Selenium 2自動化測試實戰—基於 Python 語言
-
$301Spark大資料分析實戰
-
$320$250 -
$520$406 -
$880$695 -
$580$493 -
$580$493 -
$580$458 -
$680$537
相關主題
商品描述
Time series data is of growing importance, especially with the rapid expansion of the Internet of Things. This concise guide shows you effective ways to collect, persist, and access large-scale time series data for analysis. You’ll explore the theory behind time series databases and learn practical methods for implementing them. Authors Ted Dunning and Ellen Friedman provide a detailed examination of open source tools such as OpenTSDB and new modifications that greatly speed up data ingestion.
You’ll learn:
- A variety of time series use cases
- The advantages of NoSQL databases for large-scale time series data
- NoSQL table design for high-performance time series databases
- The benefits and limitations of OpenTSDB
- How to access data in OpenTSDB using R, Go, and Ruby
- How time series databases contribute to practical machine learning projects
- How to handle the added complexity of geo-temporal data
For advice on analyzing time series data, check out Practical Machine Learning: A New Look at Anomaly Detection, also from Ted Dunning and Ellen Friedman.
商品描述(中文翻譯)
時間序列資料的重要性日益增長,尤其是隨著物聯網的快速擴展。這本簡明指南向您展示了有效收集、持久化和存取大規模時間序列資料進行分析的方法。您將探索時間序列資料庫背後的理論,並學習實施它們的實用方法。作者Ted Dunning和Ellen Friedman詳細介紹了開源工具(如OpenTSDB)以及大大加快資料輸入的新修改。
您將學到:
- 各種時間序列使用案例
- NoSQL資料庫在大規模時間序列資料中的優勢
- 高性能時間序列資料庫的NoSQL表設計
- OpenTSDB的優點和限制
- 如何使用R、Go和Ruby在OpenTSDB中存取資料
- 時間序列資料庫對實際機器學習項目的貢獻
- 如何處理地理-時間資料的額外複雜性
如果您需要分析時間序列資料的建議,請參考Ted Dunning和Ellen Friedman的另一本書《實用機器學習:對異常檢測的新觀點》。