Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods
Nandi, Anirban, Pal, Aditya Kumar
- 出版商: Apress
- 出版日期: 2021-12-16
- 售價: $2,210
- 貴賓價: 9.5 折 $2,100
- 語言: 英文
- 頁數: 368
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484278011
- ISBN-13: 9781484278017
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Chapter 1: Introduction to Machine Learning DomainChapter Goal: The book's opening chapter will talk about the journey of machine learning models and why model interpretability became so important in the recent times. This chapter will also cover some of the basic black box modelling algorithms in brief Sub-Topics: - Journey of machine learning domain- Journey of machine learning algorithms - Why only reporting accuracy is not enough for models
Chapter 2: Introduction to Model InterpretabilityChapter Goal: This chapter will talk about the importance and need of interpretability and how businesses employ model interpretability for their decisionsSub-Topics: - Why is interpretability needed for machine learning models- Motivation behind using model interpretability- Understand social and commercial motivations for machine learning interpretability, fairness, accountability, and transparency- Get a definition of interpretability and learn about the groups leading interpretability research
Chapter 3: Machine Learning Interpretability TaxonomyChapter Goal: A machine learning taxonomy is presented in this section. This will be used to characterize the interpretability of various popular machine learning techniques.Sub topics: - Understanding and trust- A scale for interpretability- Global and local interpretability- Model-agnostic and model-specific interpretability
Chapter 4: Common Properties of Explanations Generated by Interpretability MethodsChapter goal: The purpose of this chapter to explain readers about evaluation metrics for various interpretability methods. This will help readers understand which methods to choose for specific use cases
Sub topics: - Degree of importance - Stability- Consistency - Certainty- Novelty
Chapter 5: Timeline of Model interpretability Methods DiscoveryChapter goal: This chapter will talk about the timeline and will give details about when most common methods of interpretability were discovered
Chapter 6: Unified Framework for Model ExplanationsChapter goal: Each method is determined by three choices: how it handles features, what model behavior it analyzes, and how it summarizes feature influence. The chapter will focus in detail about each step and will try to map different methods to each step by giving detailed examplesSub topics1: - Removal based explanations- Summarization based explanations
Chapter 7: Different Types of Removal Based ExplanationsChapter goal: This chapter will talk about the different types of removal based methods and how to implement them along with details of examples and Python packages, real life use cases etc.Sub topics: - IME(2009)- IME(2010)- QII- SHAP- KernelSHAP- TreeSHAP- LossSHAP- SAGE- Shapley- Shapley- Permutation- Conditional- Feature- Univariate- L2X- INVASE- LIME- LIME- PredDiff- Occlusion- CXPlain- RISE- MM- MIR- MP- EP- FIDO-CA
Chapter 8: Different Types of Summarization Based ExplanationsChapter goal: This chapter will talk about the different types of summarization based methods and how to implement them along with details of examples and python p
Chapter 2: Introduction to Model InterpretabilityChapter Goal: This chapter will talk about the importance and need of interpretability and how businesses employ model interpretability for their decisionsSub-Topics: - Why is interpretability needed for machine learning models- Motivation behind using model interpretability- Understand social and commercial motivations for machine learning interpretability, fairness, accountability, and transparency- Get a definition of interpretability and learn about the groups leading interpretability research
Chapter 3: Machine Learning Interpretability TaxonomyChapter Goal: A machine learning taxonomy is presented in this section. This will be used to characterize the interpretability of various popular machine learning techniques.Sub topics: - Understanding and trust- A scale for interpretability- Global and local interpretability- Model-agnostic and model-specific interpretability
Chapter 4: Common Properties of Explanations Generated by Interpretability MethodsChapter goal: The purpose of this chapter to explain readers about evaluation metrics for various interpretability methods. This will help readers understand which methods to choose for specific use cases
Sub topics: - Degree of importance - Stability- Consistency - Certainty- Novelty
Chapter 5: Timeline of Model interpretability Methods DiscoveryChapter goal: This chapter will talk about the timeline and will give details about when most common methods of interpretability were discovered
Chapter 6: Unified Framework for Model ExplanationsChapter goal: Each method is determined by three choices: how it handles features, what model behavior it analyzes, and how it summarizes feature influence. The chapter will focus in detail about each step and will try to map different methods to each step by giving detailed examplesSub topics1: - Removal based explanations- Summarization based explanations
Chapter 7: Different Types of Removal Based ExplanationsChapter goal: This chapter will talk about the different types of removal based methods and how to implement them along with details of examples and Python packages, real life use cases etc.Sub topics: - IME(2009)- IME(2010)- QII- SHAP- KernelSHAP- TreeSHAP- LossSHAP- SAGE- Shapley- Shapley- Permutation- Conditional- Feature- Univariate- L2X- INVASE- LIME- LIME- PredDiff- Occlusion- CXPlain- RISE- MM- MIR- MP- EP- FIDO-CA
Chapter 8: Different Types of Summarization Based ExplanationsChapter goal: This chapter will talk about the different types of summarization based methods and how to implement them along with details of examples and python p