Modern Deep Learning Design and Application Development: Versatile Tools to Solve Deep Learning Problems
暫譯: 現代深度學習設計與應用開發:多功能工具解決深度學習問題

Ye, Andre

  • 出版商: Apress
  • 出版日期: 2021-11-19
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 472
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484274121
  • ISBN-13: 9781484274125
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking.

You'll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, you'll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. You'll learn not only to understand and apply methods successfully but to think critically about it.

Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to today's difficult problems.

What You'll Learn

  • Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization.
  • Compress deep learning models while maintaining performance.
  • Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them.
  • Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches.

Who This Book Is For

Data scientists with some familiarity with deep learning to deep learning engineers seeking structured inspiration and direction on their next project. Developers interested in harnessing modern deep learning methods to solve a variety of difficult problems.


商品描述(中文翻譯)

學習如何在多種情境中運用現代深度學習方法。本書內容充實,包含直觀的理論、實用的實作方法以及深度學習案例研究,揭示了設計和實作如同深度學習架構師所需的工具。它涵蓋了深度學習工程師可以在生物學、計算機視覺到商業等廣泛領域中使用的工具。透過九個深入的案例研究,本書將使您扎根於創造性、現實世界的深度學習思維。

您將從使用 Keras 的結構化指南開始,並獲得有用的提示和最佳實踐,以充分利用該框架。接下來,您將學習如何有效地使用遷移學習和自我監督的預訓練來訓練模型。然後,您將學習如何使用各種模型壓縮技術以便於實際應用。最後,您將學習如何設計成功的神經網絡架構,並創造性地將困難問題重新框架為可解決的問題。您將不僅學會理解和成功應用這些方法,還能對其進行批判性思考。

《現代深度學習設計與方法》非常適合希望利用現代、靈活且創造性的深度學習設計和方法的讀者。準備好設計和實作創新的深度學習解決方案,以應對當今的難題。

您將學到的內容:
- 通過使用預訓練模型、提取豐富特徵和自動化優化來提高深度學習模型的性能。
- 在保持性能的同時壓縮深度學習模型。
- 重新框架各種困難問題,並設計有效的深度學習解決方案來解決它們。
- 使用 Keras 框架,並借助 HyperOpt、TensorFlow 和 PyTorch 等庫,實作各種深度學習方法。

本書適合對深度學習有一定了解的數據科學家,以及尋求結構化靈感和指導的深度學習工程師。對於希望利用現代深度學習方法解決各種困難問題的開發者也非常合適。