State-Of-The-Art Deep Learning Models in Tensorflow: Modern Machine Learning in the Google Colab Ecosystem
暫譯: 最先進的深度學習模型於 TensorFlow:Google Colab 生態系統中的現代機器學習
Paper, David
- 出版商: Apress
- 出版日期: 2021-08-24
- 售價: $2,810
- 貴賓價: 9.5 折 $2,670
- 語言: 英文
- 頁數: 374
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484273400
- ISBN-13: 9781484273401
-
相關分類:
DeepLearning、TensorFlow、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.
The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.
Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.
- Take advantage of the built-in support of the Google Colab ecosystem
- Work with TensorFlow data sets
- Create input pipelines to feed state-of-the-art deep learning models
- Create pipelined state-of-the-art deep learning models with clean and reliable Python code
- Leverage pre-trained deep learning models to solve complex machine learning tasks
- Create a simple environment to teach an intelligent agent to make automated decisions
Who This Book Is For
Readers who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab
商品描述(中文翻譯)
使用 TensorFlow 2.x 在 Google Colab 生態系統中創建最先進的深度學習模型,並通過實作範例進行指導。Colab 生態系統提供免費的雲端服務,輕鬆訪問按需的 GPU(和 TPU)硬體加速,以快速執行您學習構建的模型。本書以應用的方式教您最先進的深度學習模型,唯一的要求是需要有網際網路連接。Colab 生態系統提供您所需的所有其他資源,包括 Python、TensorFlow 2.x、GPU 和 TPU 支援,以及 Jupyter Notebooks。
本書以範例驅動的方法開始,構建所有機器學習模型所需的輸入管道。您將學習如何在 Colab 生態系統中配置工作區,以逐步構建有效的輸入管道。接下來,您將進入數據增強技術和 TensorFlow 數據集,以深入了解如何處理複雜的數據集。您將學習到有關張量處理單元(TPUs)和遷移學習的內容,隨後是最先進的深度學習模型,包括自編碼器、生成對抗網絡、快速風格轉換、物體檢測和強化學習。
作者 Dr. Paper 提供了掌握內容所需的所有應用數學、程式設計和概念。範例的難度範圍從相對簡單到必要時的非常複雜。範例經過仔細解釋,簡潔、準確且完整。特別注意通過清晰的範例引導您了解每個主題,這些範例使用 Python 編寫,您可以在 Google Colab 生態系統中舒適地嘗試和實驗。
您將學到的內容:
- 利用 Google Colab 生態系統的內建支援
- 使用 TensorFlow 數據集
- 創建輸入管道以供最先進的深度學習模型使用
- 使用乾淨且可靠的 Python 代碼創建管道化的最先進深度學習模型
- 利用預訓練的深度學習模型解決複雜的機器學習任務
- 創建一個簡單的環境來教導智能代理進行自動決策
本書適合對象:
希望學習廣受歡迎的 TensorFlow 深度學習平台的讀者,想要掌握最先進深度學習模型基礎知識的人,以及希望與現代雲服務工具(如 Google Colab)建立能力的人。
作者簡介
Dr. Paper has competency in several programming languages, but his focus is currently on deep learning with Python in the TensorFlow-Colab Ecosystem. He has published extensively on machine learning, including Apress books: Data Science Fundamentals for Python and MongoDB, Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python, and TensorFlow 2.x in the Colaboratory Cloud: An Introduction to Deep Learning on Google's Cloud Service. He has also published more than 100 academic articles.
Besides growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, Inc., and the Phoenix Small Business Administration. He has performed IS consulting work for IBM, AT&T, Octel, the Utah Department of Transportation, and the Space Dynamics Laboratory. He has worked on research projects with several corporations, including Caterpillar, Fannie Mae, Comdisco, IBM, RayChem, Ralston Purina, and Monsanto. He maintains contacts in corporations such as Google, Micron, Oracle, and Goldman Sachs.
作者簡介(中文翻譯)
Paper博士是來自猶他州立大學(USU)商學院數據分析與管理資訊系的退休學者。他擁有超過30年的高等教育教學經驗。在USU,他在教室和衛星遠程教育中教學27年。他教授過多種本科、研究生和博士級別的課程,但專注於應用技術教育。
Paper博士精通多種程式語言,但目前專注於使用Python進行深度學習,並在TensorFlow-Colab生態系統中進行研究。他在機器學習方面發表了大量著作,包括Apress出版的書籍:《Python與MongoDB的數據科學基礎》、《機器學習應用的實作Scikit-Learn:Python的數據科學基礎》和《Colaboratory雲端中的TensorFlow 2.x:Google雲服務上的深度學習入門》。他還發表了超過100篇學術文章。
除了在家族企業中成長外,Paper博士曾在德州儀器、DLS, Inc.和菲尼克斯小企業管理局工作。他為IBM、AT&T、Octel、猶他州交通部和太空動力實驗室提供資訊系統諮詢服務。他與多家公司合作進行研究項目,包括卡特彼勒、房利美、Comdisco、IBM、RayChem、Ralston Purina和孟山都。他與Google、Micron、Oracle和高盛等公司保持聯繫。