Introduction to Deep Learning Business Applications for Developers: From Conversational Bots in Customer Service to Medical Image Processing

Armando Vieira

相關主題

商品描述

Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and autonomous vehicles. 

An Introduction to Deep Learning Business Applications for Developers covers some common DL algorithms such as content-based recommendation algorithms and natural language processing. You’ll explore examples, such as video prediction with fully convolutional neural networks (FCNN) and residual neural networks (ResNets). You will also see applications of DL for controlling robotics, exploring the DeepQ learning algorithm with Monte Carlo Tree search (used to beat humans in the game of Go), and modeling for financial risk assessment. There will also be mention of the powerful set of algorithms called Generative Adversarial Neural networks (GANs) that can be applied for image colorization, image completion, and style transfer.

After reading this book you will have an overview of the exciting field of deep neural networks and an understanding of most of the major applications of deep learning. The book contains some coding examples, tricks, and insights on how to train deep learning models using the Keras framework.

What You Will Learn

  • Find out about deep learning and why it is so powerful
  • Work with the major algorithms available to train deep learning models
  • See the major breakthroughs in terms of applications of deep learning  
  • Run simple examples with a selection of deep learning libraries 
  • Discover the areas of impact of deep learning in business

Who This Book Is For 
Data scientists, entrepreneurs, and business developers.


商品描述(中文翻譯)

從商業角度探索深度學習的潛在應用、挑戰和機遇,並提供技術示例。這些應用包括圖像識別、分割和標註、視頻處理和標註、語音識別、智能個人助理、自動翻譯和自動駕駛車輛。

《深度學習商業應用介紹》涵蓋了一些常見的深度學習算法,如基於內容的推薦算法和自然語言處理。您將探索一些示例,例如使用完全卷積神經網絡(FCNN)和殘差神經網絡(ResNets)進行視頻預測。您還將看到深度學習在控制機器人、探索DeepQ學習算法與蒙特卡洛樹搜索(用於在圍棋遊戲中擊敗人類)以及金融風險評估建模方面的應用。還將提到一組強大的算法,稱為生成對抗神經網絡(GANs),可應用於圖像著色、圖像補全和風格轉換。

閱讀本書後,您將對深度神經網絡這一令人興奮的領域有一個概述,並了解深度學習的大部分主要應用。本書包含一些代碼示例、技巧和有關如何使用Keras框架訓練深度學習模型的見解。

《你將學到什麼》

- 了解深度學習及其強大之處
- 使用可用的主要算法來訓練深度學習模型
- 看到深度學習在應用方面的主要突破
- 使用一些深度學習庫運行簡單的示例
- 發現深度學習在商業領域的影響範圍

《本書適合對象》

數據科學家、企業家和業務開發人員。