Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist
暫譯: R語言數據科學入門:數據分析、視覺化與建模技巧
Thomas Mailund
- 出版商: Apress
- 出版日期: 2017-03-13
- 定價: $1,980
- 售價: 8.0 折 $1,584
- 語言: 英文
- 頁數: 384
- 裝訂: Paperback
- ISBN: 1484226704
- ISBN-13: 9781484226704
-
相關分類:
R 語言、Data Science
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$520$406 -
$680$530 -
$500$390
相關主題
商品描述
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R.
Beginning Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You’ll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this.
This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming.
What You Will Learn
- Perform data science and analytics using statistics and the R programming language
- Visualize and explore data, including working with large data sets found in big data
- Build an R package
- Test and check your code
- Practice version control
- Profile and optimize your code
Who This Book Is For
Those with some data science or analytics background, but not necessarily experience with the R programming language.
商品描述(中文翻譯)
發現 R 語言中數據分析和軟體開發的最佳實踐,並開始成為一名全面的數據科學家的旅程。本書教您數據操作和可視化的技術,並展示開發 R 語言新軟體包的最佳方法。
《R 語言數據科學入門》詳細說明了數據科學是統計學、計算科學和機器學習的結合。您將學會如何有效地結構和挖掘數據,以提取有用的模式並建立數學模型。這需要計算方法和程式設計,而 R 語言是理想的程式設計語言。
本書基於作者教授的數據科學和統計程式設計課程的多篇講義。現代數據分析需要計算技能,通常至少需要一些程式設計能力。
您將學到的內容:
- 使用統計學和 R 語言進行數據科學和分析
- 可視化和探索數據,包括處理大數據中的大型數據集
- 建立 R 包
- 測試和檢查您的程式碼
- 實踐版本控制
- 剖析和優化您的程式碼
本書適合對象:
有一定數據科學或分析背景的人,但不一定具備 R 語言的經驗。