Event Mining for Explanatory Modeling
暫譯: 事件挖掘與解釋性建模
Jalali, Laleh, Jain, Ramesh
- 出版商: Macmillan
- 出版日期: 2021-05-21
- 售價: $1,930
- 貴賓價: 9.5 折 $1,834
- 語言: 英文
- 頁數: 162
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 145038482X
- ISBN-13: 9781450384827
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book introduces the concept of Event Mining for building explanatory models from analyses of correlated data. Such a model may be used as the basis for predictions and corrective actions. The idea is to create, via an iterative process, a model that explains causal relationships in the form of structural and temporal patterns in the data. The first phase is the data-driven process of hypothesis formation, requiring the analysis of large amounts of data to find strong candidate hypotheses. The second phase is hypothesis testing, wherein a domain expert's knowledge and judgment is used to test and modify the candidate hypotheses.
The book is intended as a primer on Event Mining for data-enthusiasts and information professionals interested in employing these event-based data analysis techniques in diverse applications. The reader is introduced to frameworks for temporal knowledge representation and reasoning, as well as temporal data mining and pattern discovery. Also discussed are the design principles of event mining systems. The approach is reified by the presentation of an event mining system called EventMiner, a computational framework for building explanatory models. The book contains case studies of using EventMiner in asthma risk management and an architecture for the objective self. The text can be used by researchers interested in harnessing the value of heterogeneous big data for designing explanatory event-based models in diverse application areas such as healthcare, biological data analytics, predictive maintenance of systems, computer networks, and business intelligence.
商品描述(中文翻譯)
這本書介紹了事件挖掘(Event Mining)的概念,旨在從相關數據的分析中建立解釋性模型。這樣的模型可以作為預測和修正行動的基礎。其理念是通過迭代過程創建一個模型,解釋數據中因果關係的結構和時間模式。第一階段是以數據為驅動的假設形成過程,這需要分析大量數據以找到強有力的候選假設。第二階段是假設測試,這時會利用領域專家的知識和判斷來測試和修改候選假設。
本書旨在為對事件挖掘感興趣的數據愛好者和信息專業人士提供入門指南,幫助他們在各種應用中運用這些基於事件的數據分析技術。讀者將接觸到時間知識表示和推理的框架,以及時間數據挖掘和模式發現的相關內容。書中還討論了事件挖掘系統的設計原則。這一方法通過介紹一個名為EventMiner的事件挖掘系統得以具體化,這是一個用於建立解釋性模型的計算框架。本書包含了在哮喘風險管理中使用EventMiner的案例研究,以及一個關於客觀自我的架構。該文本可供有興趣利用異構大數據價值的研究人員使用,以設計在醫療保健、生物數據分析、系統的預測性維護、計算機網絡和商業智能等多個應用領域中的基於事件的解釋性模型。