Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)

Foster Provost, Tom Fawcett

買這商品的人也買了...

相關主題

商品描述

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today.

Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.

  • Understand how data science fits in your organization—and how you can use it for competitive advantage
  • Treat data as a business asset that requires careful investment if you’re to gain real value
  • Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way
  • Learn general concepts for actually extracting knowledge from data
  • Apply data science principles when interviewing data science job candidates

商品描述(中文翻譯)

由著名的數據科學專家Foster Provost和Tom Fawcett所著的《Data Science for Business》介紹了數據科學的基本原理,並引導您進行“數據分析思維”,以從收集到的數據中提取有用的知識和商業價值。本指南還幫助您了解當今使用的許多數據挖掘技術。

基於Provost在紐約大學教授的MBA課程的十年經驗,《Data Science for Business》提供了實際商業問題的例子來說明這些原則。您不僅將學習如何改善業務利益相關者和數據科學家之間的溝通,還將學習如何智能參與公司的數據科學項目。您還將了解如何以數據分析的方式思考,並充分認識到數據科學方法如何支持業務決策。

本書內容包括:
- 理解數據科學在組織中的地位,以及如何利用它獲得競爭優勢
- 將數據視為一項需要仔細投資的業務資產,以獲得真正的價值
- 以數據分析的方式處理業務問題,使用數據挖掘過程以最適當的方式收集良好的數據
- 學習從數據中提取知識的一般概念
- 在面試數據科學職位候選人時應用數據科學原則

該書以實用的方式介紹了數據科學的應用,並提供了豐富的示例和指導,使讀者能夠更好地應用數據科學於商業領域。