Low Rank Approximation: Algorithms, Implementation, Applications (Communications and Control Engineering)
暫譯: 低秩近似:演算法、實作與應用(通訊與控制工程)
Ivan Markovsky
- 出版商: Springer
- 出版日期: 2011-11-19
- 售價: $6,250
- 貴賓價: 9.5 折 $5,938
- 語言: 英文
- 頁數: 258
- 裝訂: Hardcover
- ISBN: 1447122267
- ISBN-13: 9781447122265
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis.
Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB® examples assist in the assimilation of the theory.
商品描述(中文翻譯)
《低複雜度模型的數據近似》詳細介紹了結構化低秩近似的理論、算法和應用。書中提出了高效的局部優化方法和有效的次優凸鬆弛,針對Toeplitz、Hankel和Sylvester結構問題進行探討。文本的大部分內容專注於描述該理論的應用,包括:系統與控制理論;信號處理;用於近似因式分解和公因數計算的計算代數;用於圖像去模糊和分割的計算機視覺;用於信息檢索和聚類的機器學習;用於微陣列數據分析的生物信息學;用於多變量校準的化學計量學;以及用於因子分析的心理計量學。
書中提供了方法的軟體實現,使理論在實踐中直接可用。所有數值範例均包含在演示檔案中,提供實作經驗和練習,並且MATLAB®範例有助於理論的理解。