Temporal Data Mining (Hardcover)
Theophano Mitsa
- 出版商: CRC
- 出版日期: 2010-03-09
- 售價: $2,700
- 貴賓價: 9.5 折 $2,565
- 語言: 英文
- 頁數: 395
- 裝訂: Hardcover
- ISBN: 1420089765
- ISBN-13: 9781420089769
-
相關分類:
Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$1,088Botnets: The Killer Web Applications
-
$990$891 -
$620$527 -
$690$538 -
$860$774 -
$1,550$1,473 -
$620$484 -
$890$757 -
$750$638 -
$490$417 -
$450$351 -
$480$408 -
$590$502 -
$850$723 -
$950$808 -
$680$537 -
$680$537 -
$380$342 -
$580$458 -
$1,842Applied Longitudinal Analysis, 2/e (Hardcover)
-
$680$537 -
$1,881$1,782 -
$788Mining the Social Web, 2E
-
$420$332
相關主題
商品描述
Temporal data mining deals with the harvesting of useful information from temporal data. New initiatives in health care and business organizations have increased the importance of temporal information in data today.
From basic data mining concepts to state-of-the-art advances, Temporal Data Mining covers the theory of this subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining.
Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references. In the appendices, the author explains how data mining fits the overall goal of an organization and how these data can be interpreted for the purpose of characterizing a population. She also provides programs written in the Java language that implement some of the algorithms presented in the first chapter. Check out the author's blog at http://theophanomitsa.wordpress.com/
商品描述(中文翻譯)
時間數據挖掘涉及從時間數據中提取有用信息。在醫療保健和商業組織的新舉措中,時間信息在數據中的重要性日益增加。
從基本的數據挖掘概念到最新的進展,《時間數據挖掘》涵蓋了這一主題的理論以及在各個領域中的應用。它討論了在數據庫中導入時間性以及時間數據表示、相似性計算、數據分類、聚類、模式發現和預測。該書還探討了時間數據挖掘在醫學和生物醫學信息學、商業和工業應用、網絡使用挖掘以及時空數據挖掘中的應用。
除了各種最新的算法外,每章還包括詳細的參考文獻和對其他參考文獻中描述的相關算法和技術的簡短描述。在附錄中,作者解釋了數據挖掘如何符合組織的整體目標,以及如何解釋這些數據以描述一個人口。她還提供了用Java語言編寫的程序,實現了第一章中介紹的一些算法。請查看作者的博客:http://theophanomitsa.wordpress.com/