Biological Data Mining (Hardcover)
Jake Y. Chen, Stefano Lonardi
- 出版商: CRC
- 出版日期: 2009-09-01
- 售價: $3,500
- 貴賓價: 9.5 折 $3,325
- 語言: 英文
- 頁數: 733
- 裝訂: Hardcover
- ISBN: 1420086847
- ISBN-13: 9781420086843
-
相關分類:
Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$880$581 -
$980$774 -
$720$612 -
$620$527 -
$800$632 -
$720$569 -
$880$695 -
$860$774 -
$1,550$1,473 -
$450$356 -
$750$593 -
$650$514 -
$520$411 -
$820$648 -
$680$537 -
$530$419 -
$890$757 -
$520$416 -
$690$621 -
$420$378 -
$420$332 -
$520$468 -
$580$458 -
$590$502
相關主題
商品描述
Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplinary data mining researchers who cover state-of-the-art biological topics.
The first section of the book discusses challenges and opportunities in analyzing and mining biological sequences and structures to gain insight into molecular functions. The second section addresses emerging computational challenges in interpreting high-throughput Omics data. The book then describes the relationships between data mining and related areas of computing, including knowledge representation, information retrieval, and data integration for structured and unstructured biological data. The last part explores emerging data mining opportunities for biomedical applications.
This volume examines the concepts, problems, progress, and trends in developing and applying new data mining techniques to the rapidly growing field of genome biology. By studying the concepts and case studies presented, readers will gain significant insight and develop practical solutions for similar biological data mining projects in the future.
商品描述(中文翻譯)
描述
像一個吞噬數據的渦輪引擎一樣,先進的數據挖掘已經在後基因組生物學研究中發揮作用已有二十年。反映了這一增長,《生物數據挖掘》介紹了當前生物和醫學研究中的全面數據挖掘概念、理論和應用。每一章都由一個傑出的跨學科數據挖掘研究團隊撰寫,涵蓋了最先進的生物主題。
書籍的第一部分討論了分析和挖掘生物序列和結構以獲得對分子功能的洞察力所面臨的挑戰和機遇。第二部分討論了解釋高通量Omics數據中的新興計算挑戰。然後,本書描述了數據挖掘與計算機相關領域之間的關係,包括知識表示、信息檢索以及結構化和非結構化生物數據的數據集成。最後一部分探討了生物醫學應用中新興的數據挖掘機會。
本書研究了發展和應用新的數據挖掘技術到迅速發展的基因組生物學領域的概念、問題、進展和趨勢。通過研究所呈現的概念和案例研究,讀者將獲得重要的洞察力,並為未來類似的生物數據挖掘項目開發實用解決方案。