Optimization for Data Analysis
暫譯: 數據分析的優化

Wright, Stephen J., Recht, Benjamin

  • 出版商: Cambridge
  • 出版日期: 2022-04-21
  • 售價: $1,900
  • 貴賓價: 9.5$1,805
  • 語言: 英文
  • 頁數: 300
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1316518981
  • ISBN-13: 9781316518984
  • 相關分類: Data SciencePython
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.

商品描述(中文翻譯)

優化技術是數據科學的核心,包括數據分析和機器學習。對基本優化技術及其基本特性的理解為這些領域的學生、研究人員和從業者提供了重要的基礎。本書以簡潔、自足的方式涵蓋了優化算法的基本原理,重點關注與數據科學最相關的技術。一個介紹性章節展示了許多數據科學中的標準問題可以被表述為優化問題。接下來,描述和分析了許多優化中的基本方法,包括:用於平滑(特別是凸)函數的無約束優化的梯度和加速梯度方法;隨機梯度方法,這是一種在機器學習中常用的算法;坐標下降法;幾個關鍵的約束優化問題算法;用於最小化在數據科學中出現的非平滑函數的算法;非平滑函數和優化對偶性的分析基礎;以及與神經網絡相關的反向傳播方法。