Optimization for Learning and Control
暫譯: 學習與控制的最佳化
Andersen, Martin, Hansson, Anders
- 出版商: Wiley
- 出版日期: 2023-06-07
- 售價: $4,010
- 貴賓價: 9.5 折 $3,810
- 語言: 英文
- 頁數: 432
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119809134
- ISBN-13: 9781119809135
海外代購書籍(需單獨結帳)
相關主題
商品描述
Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control
Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems.
Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning.
Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters' level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters' students in a coherent way. The focus is on basic algorithmic principles and trade-offs
Optimization for Learning and Control covers sample topics such as:
- Optimization theory and optimization methods, covering classes of optimization problems like least squares problems, quadratic problems, conic optimization problems and rank optimization.
- First-order methods, second-order methods, variable metric methods, and methods for nonlinear least squares problems
- Stochastic optimization methods, augmented Lagrangian methods, interior-point methods, and conic optimization methods
- Dynamic programming for solving optimal control problems and its generalization to reinforcement learning.
- How optimization theory is used to develop theory and tools of statistics and learning, e.g., the maximum likelihood method, expectation maximization, k-means clustering, and support vector machines.
- How calculus of variations is used in optimal control and for deriving the family of exponential distributions.
Optimization for Learning and Control is an ideal resource on the subject for scientists and engineers learning about which optimization methods are useful for learning and control problems; the text will also appeal to industry professionals using machine learning for different practical applications.
商品描述(中文翻譯)
提供碩士級別的優化理論與算法學習與控制的綜合資源
學習與控制的優化描述了優化在這些領域中的應用,全面介紹了無監督學習、監督學習和強化學習,並強調了針對大規模學習和控制問題的優化方法。
本書還討論了幾個應用領域,包括信號處理、系統識別、最優控制和機器學習。
如今,大多數可供碩士級學生接觸的深度學習優化方面的材料,主要集中在表面層次的計算機編程;對於這些方法背後的優化方法及其權衡的深入知識並未提供。本書的目標是將這些目前主要存在於學術期刊出版物中的零散知識,以連貫的方式提供給碩士學生。重點在於基本的算法原則和權衡。
學習與控制的優化涵蓋的主題包括:
- 優化理論和優化方法,涵蓋最小二乘問題、二次問題、圓錐優化問題和秩優化等優化問題類別。
- 一階方法、二階方法、變量度量方法以及非線性最小二乘問題的方法。
- 隨機優化方法、增廣拉格朗日方法、內點方法和圓錐優化方法。
- 動態規劃用於解決最優控制問題及其在強化學習中的推廣。
- 優化理論如何用於發展統計學和學習的理論與工具,例如最大似然法、期望最大化、k-均值聚類和支持向量機。
- 變分法如何用於最優控制及推導指數分佈族。
學習與控制的優化是科學家和工程師學習哪些優化方法對學習和控制問題有用的理想資源;該文本也將吸引在不同實際應用中使用機器學習的行業專業人士。
作者簡介
Anders Hansson, PhD, is a Professor in the Department of Electrical Engineering at Linköping University, Sweden. His research interests include the fields of optimal control, stochastic control, linear systems, signal processing, applications of control, and telecommunications.
Martin Andersen, PhD, is an Associate Professor in the Department of Applied Mathematics and Computer Science at the Technical University of Denmark. His research interests include optimization, numerical methods, signal and image processing, and systems and control.
作者簡介(中文翻譯)
安德斯·漢森(Anders Hansson),博士,是瑞典林雪平大學(Linköping University)電機工程系的教授。他的研究興趣包括最優控制、隨機控制、線性系統、信號處理、控制應用及電信等領域。
馬丁·安德森(Martin Andersen),博士,是丹麥科技大學(Technical University of Denmark)應用數學與計算機科學系的副教授。他的研究興趣包括優化、數值方法、信號與影像處理,以及系統與控制。