Meta-heuristic and Evolutionary Algorithms for Engineering Optimization (Wiley Series in Operations Research and Management Science)
Omid Bozorg-Haddad, Mohammad Solgi, Hugo A. Loáiciga
- 出版商: Wiley
- 出版日期: 2017-10-09
- 售價: $4,860
- 貴賓價: 9.5 折 $4,617
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover
- ISBN: 1119386993
- ISBN-13: 9781119386995
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems
This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique.
Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book:
- Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization;
- Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner;
- Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms;
- Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering;
- Relates optimization algorithms to engineering problems employing a unifying approach.
Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science.
OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran.
MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran.
HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.
商品描述(中文翻譯)
本書以系統化的方式詳細回顧了各種元啟發式和進化演算法,以及它們與工程優化問題的關聯。
本書介紹了主要的元啟發式演算法及其在優化中的應用。它描述了20種領先的元啟發式和進化演算法,並對它們在解決多個工程領域的優化問題中的表現進行了討論和評估。本書特別強調清晰且簡明的原則,並詳細描述了如模式搜尋(Pattern Search, PS)演算法、遺傳演算法(Genetic Algorithm, GA)、模擬退火(Simulated Annealing, SA)演算法、禁忌搜尋(Tabu Search, TS)演算法、螞蟻群優化(Ant Colony Optimization, ACO)和粒子群優化(Particle Swarm Optimization, PSO)技術等領先方法。
《元啟發式和進化演算法在工程優化中的應用》的第一章提供了優化的概述,並通過展示不同工程領域的優化問題範例來定義優化。第二章介紹了元啟發式和進化演算法,並將其與工程問題聯繫起來。第三至二十二章各自專注於一種獨立的演算法,並以該演算法的發展及其在工程問題中的應用的簡要文獻回顧開始。詳細描述了演算法的原則、步驟和執行,並提供了演算法的偽代碼,作為編碼該演算法以解決特定應用的指導。本書:
- 介紹了最先進的元啟發式演算法及其在工程優化中的應用;
- 通過清晰且系統化的方式彌補了當前文獻中的空白,編纂並解釋了各種元啟發式和進化演算法;
- 提供了每種演算法的逐步介紹及實際實施和編碼的指導;
- 討論並評估了元啟發式演算法在多個工程領域問題中的表現;
- 以統一的方法將優化演算法與工程問題聯繫起來。
《元啟發式和進化演算法在工程優化中的應用》是一本參考書,旨在為工業工程、運籌學、優化/數學、工程優化和計算機科學領域的學生、工程師、研究人員和講師提供參考。
OMID BOZORG-HADDAD 博士是伊朗德黑蘭大學灌溉與復墾工程系的教授。
MOHAMMAD SOLGI 碩士是伊朗德黑蘭大學碩士課程的助教。
HUGO A. LOÁICIGA 博士是美國加州大學聖巴巴拉分校地理系的教授。