Financial Signal Processing and Machine Learning
Ali N. Akansu (Editor), Sanjeev R. Kulkarni (Editor), Dmitry M. Malioutov (Editor)
- 出版商: IEEE
- 出版日期: 2016-05-31
- 售價: $3,940
- 貴賓價: 9.5 折 $3,743
- 語言: 英文
- 頁數: 312
- 裝訂: Hardcover
- ISBN: 1118745671
- ISBN-13: 9781118745670
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$3,600$3,420 -
$534$507 -
$654$621 -
$894$849 -
$1,910$1,815 -
$602$566 -
$774$735 -
$509數以達理:量化研發管理指南
-
$2,185$2,070 -
$301基於近鄰思想和同步模型的聚類算法
-
$2,350$2,233 -
$654$621 -
$599$569 -
$680$530
相關主題
商品描述
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches.
Key features:
• Highlights signal processing and machine learning as key approaches to quantitative finance.
• Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems.
• Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques.
• Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
商品描述(中文翻譯)
現代金融業必須處理大型且多樣化的投資組合,通常只有有限的市場數據可用。《金融信號處理與機器學習》整合了信號處理和機器學習在投資組合設計和金融工程管理方面的最新進展。本書彌補了這些學科之間的差距,提供了關於關鍵主題的最新資訊,包括在高維度中表徵統計相依性和相關性、構建有效且穩健的風險度量以及在投資組合優化和再平衡中的應用。本書專注於信號處理方法來建模回報、動能和均值回歸,並討論理論和實施方面。它突出了投資組合理論、稀疏學習和壓縮感知、稀疏特徵組合、穩健優化、非高斯數據驅動的風險度量、圖模型、時間因果建模和大規模copula方法之間的聯繫。
主要特點:
- 強調信號處理和機器學習作為量化金融的關鍵方法。
- 提供高維度投資組合構建、監控和交易後分析問題的高級數學工具。
- 提出投資組合理論、稀疏學習和壓縮感知、稀疏方法用於投資組合,包括特徵組合、回報模型、動能、均值回歸和非高斯數據驅動的風險度量,並應用於實際場景。
- 包括來自信號和信息處理社區以及量化金融社區的領先研究人員和從業者的貢獻。