Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2/e (Hardcover) (資料探勘與機器學習:基本概念與演算法,第二版 (精裝版))
Zaki, Mohammed J., Meira Jr, Wagner
- 出版商: Cambridge
- 出版日期: 2020-03-12
- 售價: $1,860
- 貴賓價: 9.8 折 $1,823
- 語言: 英文
- 頁數: 776
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1108473989
- ISBN-13: 9781108473989
-
相關分類:
Machine Learning、Algorithms-data-structures、Data-mining
-
相關翻譯:
數據挖掘與機器學習 : 基礎概念和算法 (原書2版) (Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2/e) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$390$308 -
$750$713 -
$1,156Digital Control Systems Analysis & Design, 4/e (IE-Paperback)
-
$1,580$1,501 -
$450$356 -
$360$281 -
$520$442 -
$580$458 -
$1,580$1,501 -
$520$494 -
$700$665 -
$580$458 -
$4,570$4,342 -
$680$578 -
$580$551 -
$1,420$1,392 -
$580$458 -
$620$527 -
$505SQL 數據分析
-
$505數據庫高效優化 : 架構、規範與 SQL 技巧
-
$780$616 -
$620$527 -
$650$514 -
$2,835Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
相關主題
商品描述
The fundamental algorithms in data mining and machine learning form the basis of data science, utilizing automated methods to analyze patterns and models for all kinds of data in applications ranging from scientific discovery to business analytics. This textbook for senior undergraduate and graduate courses provides a comprehensive, in-depth overview of data mining, machine learning and statistics, offering solid guidance for students, researchers, and practitioners. The book lays the foundations of data analysis, pattern mining, clustering, classification and regression, with a focus on the algorithms and the underlying algebraic, geometric, and probabilistic concepts. New to this second edition is an entire part devoted to regression methods, including neural networks and deep learning.
商品描述(中文翻譯)
資料探勘和機器學習中的基本演算法是資料科學的基礎,利用自動化方法來分析各種應用中的模式和模型,從科學發現到商業分析都有所應用。這本教科書針對高年級本科生和研究生課程,提供了對資料探勘、機器學習和統計學的全面深入概述,為學生、研究人員和從業人員提供了可靠的指導。該書奠定了資料分析、模式探勘、分群、分類和回歸的基礎,重點介紹了演算法和底層的代數、幾何和概率概念。第二版新增了一個完整的部分,專門介紹回歸方法,包括神經網絡和深度學習。