Statistical Methods for Recommender Systems(Hardcover)
暫譯: 推薦系統的統計方法(精裝版)

Deepak K. Agarwal, Bee-Chung Chen

  • 出版商: Cambridge
  • 出版日期: 2016-02-24
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 298
  • 裝訂: Hardcover
  • ISBN: 1107036070
  • ISBN-13: 9781107036079
  • 相關分類: 推薦系統
  • 相關翻譯: 統計推薦系統 (簡中版)
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.

商品描述(中文翻譯)

設計演算法以向用戶推薦新聞文章和電影等項目是許多網路應用中的一項挑戰性任務。問題的核心在於根據用戶對不同項目的反應對項目進行排序,以優化多個目標。主要的技術挑戰包括高維度預測與稀疏數據,以及構建高維度序列設計以收集用於用戶建模和系統設計的數據。這本書全面探討了推薦系統中出現的統計問題,包括對當前最先進方法的詳細深入討論,例如自適應序列設計(多臂賭徒方法)、雙線性隨機效應模型(矩陣分解)以及使用現代計算範式(如 MapReduce)進行可擴展模型擬合。作者利用他們在 Yahoo! 和 LinkedIn 等大型系統工作的豐富經驗,通過直接參與的應用示例來縮小理論與實踐之間的差距,說明複雜的概念。