Mathematical Foundations of Artificial Intelligence: Basics of Manifold Theory
暫譯: 人工智慧的數學基礎:流形理論基礎
Xiong, Momiao
- 出版商: CRC
- 出版日期: 2026-02-13
- 售價: $6,420
- 貴賓價: 9.5 折 $6,099
- 語言: 英文
- 頁數: 368
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1041076258
- ISBN-13: 9781041076254
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Mathematical Foundations of Artificial Intelligence: Basics of Manifold Theory is the first volume in a two-part series. Together, they establish a unifying mathematical framework based on smooth manifold theory and Riemannian geometry・essential tools for representing, analyzing, and integrating the growing complexity of modern artificial intelligence (AI) systems and scientific models.
Differential geometry now plays a central role across AI, biology, physics, and medicine. From deep learning, generative modeling, and manifold learning to reasoning algorithms and physical AI, manifolds offer a coherent geometric language that bridges theory and practice. This volume introduces key concepts・topological and smooth manifolds, Riemannian metrics, differential forms, Lie derivatives, and statistical geometry・alongside illustrative applications to data science, genomics, drug discovery, and AI-driven systems.
Unlike traditional texts, this book combines rigor with intuition, integrating formal theory, computational methods, and interdisciplinary insights, and is ideal for graduate students and professionals in mathematics, statistics, computer science, AI, physics, bioinformatics, and biomedical sciences. It also serves as a foundational reference for researchers developing AI systems grounded in geometry, scientific modeling, and data-driven discovery.
Key Features
- Unifies core manifold concepts to support integrated thinking across disciplines
- Treats manifolds as natural geometric domains for data representation in AI and the sciences
- Bridges abstract theory with practical algorithms and real-world applications
- Develops Lie derivative aware graphical neural networks for adaptive-AI and molecular property prediction
- Develops Lie derivative enhanced reaction-diffusion equations for disease gene identification and treatment design
- Develops probabilistic modeling and information geometry for modern learning systems
- Applies geometric insight to AI fields, including generative models, graph learning, and reasoning
- Applies the Gauss map and Chen-Gauss-Bonnet theorem to physical AI incorporating geometric constraints for robotics and tumor cell location and range identification
- Features step-by-step examples, case studies, and visual explanations to support understanding
- Serves as an advanced educational and skill-building resource in the age of AI, leveraging the capabilities of emerging AI tools for automatic programming and self-study
商品描述(中文翻譯)
《人工智慧的數學基礎:流形理論基礎》是兩卷系列的第一卷。這兩卷書共同建立了一個基於光滑流形理論和黎曼幾何的統一數學框架,這些是表示、分析和整合現代人工智慧(AI)系統及科學模型日益增長的複雜性所必需的工具。
微分幾何現在在人工智慧、生物學、物理學和醫學中扮演著核心角色。從深度學習、生成建模和流形學習到推理算法和物理AI,流形提供了一種連貫的幾何語言,橋接了理論與實踐。本卷介紹了關鍵概念,包括拓撲流形、光滑流形、黎曼度量、微分形式、李導數和統計幾何,並附有數據科學、基因組學、藥物發現和AI驅動系統的應用示例。
與傳統文本不同,本書結合了嚴謹性與直覺,整合了形式理論、計算方法和跨學科的見解,適合數學、統計學、計算機科學、人工智慧、物理學、生物信息學和生物醫學科學的研究生和專業人士。它也作為一個基礎參考,供研究者開發基於幾何、科學建模和數據驅動發現的AI系統。
主要特點
- 統一核心流形概念,以支持跨學科的整合思維
- 將流形視為AI和科學中數據表示的自然幾何領域
- 橋接抽象理論與實用算法及現實世界應用
- 開發考慮李導數的圖形神經網絡,用於自適應AI和分子性質預測
- 開發增強李導數的反應-擴散方程,用於疾病基因識別和治療設計
- 開發現代學習系統的概率建模和信息幾何
- 將幾何見解應用於AI領域,包括生成模型、圖學習和推理
- 將高斯映射和陳-高斯-博內定理應用於物理AI,結合幾何約束,用於機器人技術和腫瘤細胞位置及範圍識別
- 提供逐步示例、案例研究和視覺解釋,以支持理解
- 作為AI時代的高級教育和技能培養資源,利用新興AI工具的能力進行自動編程和自學
作者簡介
Momiao Xiong, is a retired professor in the Department of Biostatistics and Data Science, University of Texas School of Public Health, and a regular member in the Genetics & Epigenetics (G&E) Graduate Program at The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Science. He is President of the Society of Artificial Intelligence Research.
作者簡介(中文翻譯)
熊莫妙是德克薩斯大學公共衛生學院生物統計與數據科學系的退休教授,以及德克薩斯大學MD安德森癌症中心UTHealth生物醫學科學研究所遺傳學與表觀遺傳學(G&E)研究生計畫的正式成員。他是人工智慧研究學會的會長。