Multivariate Generalized Linear Mixed Models Using R
暫譯: 使用 R 的多變量廣義線性混合模型

Berridge, Damon Mark, Crouchley, Robert

  • 出版商: CRC
  • 出版日期: 2024-10-14
  • 售價: $2,250
  • 貴賓價: 9.5$2,138
  • 語言: 英文
  • 頁數: 304
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 103292280X
  • ISBN-13: 9781032922805
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.

A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model estimation, and endogenous variables, along with SabreR commands and examples.

Improve Your Longitudinal StudyIn medical and social science research, MGLMMs help disentangle state dependence from incidental parameters. Focusing on these sophisticated data analysis techniques, this book explains the statistical theory and modeling involved in longitudinal studies. Many examples throughout the text illustrate the analysis of real-world data sets. Exercises, solutions, and other material are available on a supporting website.

商品描述(中文翻譯)

《使用 R 的多變量廣義線性混合模型》提供了穩健且方法論上可靠的模型,用於分析大型和複雜的數據集,使讀者能夠回答日益複雜的研究問題。本書將建模原則應用於來自面板及相關研究的縱向數據,並透過 R 的 Sabre 軟體包進行分析。

廣泛模型類別的統一框架作者首先討論廣義線性模型家族的成員,逐步通過引入隨機效應來增加建模框架的複雜性。在回顧廣義線性模型的符號後,他們展示了一系列隨機效應模型,包括三層、多變量、終點、事件歷史和狀態依賴模型。他們使用標準或自適應高斯求積法來估計多變量廣義線性混合模型(MGLMMs)。作者還比較了兩層固定和隨機效應線性模型。附錄中包含有關求積法、模型估計和內生變數的額外信息,以及 SabreR 命令和示例。

改善您的縱向研究在醫學和社會科學研究中,MGLMMs 有助於將狀態依賴與偶然參數分開。專注於這些複雜的數據分析技術,本書解釋了縱向研究中涉及的統計理論和建模。文本中有許多示例說明了對現實世界數據集的分析。練習、解答和其他材料可在支持網站上獲得。

作者簡介

Damon M. Berridge is a senior lecturer in the Department of Mathematics and Statistics at Lancaster University. Dr. Berridge has nearly 20 years of experience as a statistical consultant. His research focuses on the modeling of binary and ordinal recurrent events through random effects models, with application in medical and social statistics.

Robert Crouchley is a professor of applied statistics and director of the Centre for e-Science at Lancaster University. His research interests involve the development of statistical methods and software for causal inference in nonexperimental data. These methods include models for errors in variables, missing data, heterogeneity, state dependence, nonstationarity, event history data, and selection effects.

作者簡介(中文翻譯)

Damon M. Berridge 是蘭卡斯特大學數學與統計系的高級講師。Berridge 博士擁有近 20 年的統計顧問經驗。他的研究專注於通過隨機效應模型對二元和序數重複事件進行建模,並應用於醫學和社會統計學。

Robert Crouchley 是蘭卡斯特大學應用統計學教授及電子科學中心主任。他的研究興趣包括為非實驗數據中的因果推斷開發統計方法和軟體。這些方法包括變數誤差模型、缺失數據、異質性、狀態依賴性、非平穩性、事件歷史數據和選擇效應。