Change Point Analysis: Theory and Application
暫譯: 變更點分析:理論與應用

Jin, Baisuo, Li, Jialiang

  • 出版商: CRC
  • 出版日期: 2025-08-29
  • 售價: $4,350
  • 貴賓價: 9.5$4,133
  • 語言: 英文
  • 頁數: 236
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032649046
  • ISBN-13: 9781032649047
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Change point analysis is a crucial statistical technique for detecting structural breaks within datasets, applicable in diverse fields such as finance and weather forecasting. The authors of this book aim to consolidate recent advancements and broaden the scope beyond traditional time series applications to include biostatistics, longitudinal data analysis, high-dimensional data, and network analysis.

The book introduces foundational concepts with practical data examples from literature, alongside discussions of related machine learning topics. Subsequent chapters focus on mathematical tools for single- and multiple-change point detection along with statistical inference issues, which provide rigorous proofs to enhance understanding but assume readers have foundational knowledge in graduate-level probability and statistics. The book also expands the discussion into threshold regression frameworks linked to subgroup identification in modern statistical learning and apply change point analysis to functional data and dynamic networks--areas not comprehensively covered elsewhere.

Key Features:

- Comprehensive Coverage of Diverse Applications: This book expands the scope of change point analysis to include biostatistics, longitudinal data, high-dimensional data, and network analysis. This broad applicability makes it a valuable resource for researchers and students across various disciplines.

- Integration of Theory and Practice: The book balances rigorous mathematical theory with practical applications by providing extensive computational examples using R. Each chapter features real-world data illustrations and discussions of relevant machine learning topics, ensuring that readers can see the relevance of theoretical concepts in applied settings.

- Accessibility for Students: The content is designed with graduate-level students in mind, providing clear explanations and structured guidance through complex mathematical tools. Rigorous proofs are included to facilitate understanding without overwhelming readers with overly advanced theories early on.

The book incorporates computational results using R, showcasing various packages tailored for specific methods or problem domains while providing references for further exploration. By offering a selection of widely adopted methodologies relevant in scientific research as well as business contexts, this text aims to equip junior researchers with essential tools needed for their work in change point analysis.

商品描述(中文翻譯)

變更點分析是一種關鍵的統計技術,用於檢測數據集中的結構性斷裂,適用於金融和天氣預測等多個領域。本書的作者旨在整合近期的進展,並擴展其範疇,超越傳統的時間序列應用,涵蓋生物統計學、縱向數據分析、高維數據和網絡分析。

本書介紹了基礎概念,並提供來自文獻的實際數據範例,還討論了相關的機器學習主題。隨後的章節專注於單變更點和多變更點檢測的數學工具,以及統計推斷問題,這些內容提供了嚴謹的證明以增強理解,但假設讀者具備研究生級別的概率和統計基礎知識。本書還擴展了討論,涉及與現代統計學習中的子群識別相關的閾值回歸框架,並將變更點分析應用於功能數據和動態網絡——這些領域在其他地方並未得到全面覆蓋。

主要特點:

- 多樣應用的全面覆蓋:本書擴展了變更點分析的範疇,涵蓋生物統計學、縱向數據、高維數據和網絡分析。這種廣泛的適用性使其成為各學科研究人員和學生的寶貴資源。

- 理論與實踐的整合:本書在提供使用 R 的廣泛計算範例的同時,平衡了嚴謹的數學理論與實際應用。每章都包含現實世界數據的插圖和相關機器學習主題的討論,確保讀者能夠看到理論概念在應用環境中的相關性。

- 學生的可及性:內容設計考慮到研究生級別的學生,提供清晰的解釋和結構化的指導,幫助他們理解複雜的數學工具。包含的嚴謹證明有助於理解,而不會讓讀者在早期就被過於高深的理論所淹沒。

本書整合了使用 R 的計算結果,展示了針對特定方法或問題領域量身定制的各種套件,同時提供進一步探索的參考資料。通過提供在科學研究和商業環境中廣泛採用的方法論選擇,本書旨在為初級研究人員提供進行變更點分析所需的基本工具。

作者簡介

Baisuo Jin is a professor at University of Science and Technology of China. His research fields include spatial statistics, random matrix and change point. His research works have been accepted for publication in premium journals including The Proceedings of the National Academy of Sciences (PNAS), The Annals of Statistics, and Biometrika.

Jialiang Li is a professor at Department of Statistics and Data Science, National University of Singapore. He was elected as Elected Member of International Statistical Institute (ISI) in 2019, Fellow of American Statistical Association (ASA) in 2020 and Fellow of Institute of Mathematical Statistics (IMS) in 2022. He has served on the editorial board for Annals of Applied Statistics, Annual Review of Statistics and Its Application, Biometrics, Biostatistics & Epidemiology, Lifetime Data Analysis and Statistical Methods in Medical Research.

作者簡介(中文翻譯)

金百所是中國科學技術大學的教授。他的研究領域包括空間統計、隨機矩陣和變點分析。他的研究成果已被《美國國家科學院院刊》(PNAS)、《統計年鑑》和《生物計量學》等頂級期刊接受發表。

李家良是新加坡國立大學統計與數據科學系的教授。他於2019年當選為國際統計學會(ISI)會員,2020年成為美國統計協會(ASA)會士,並於2022年成為數學統計學會(IMS)會士。他曾擔任《應用統計年鑑》、《統計及其應用年鑑》、《生物計量學》、《生物統計學與流行病學》、《生命數據分析》和《醫學研究中的統計方法》等期刊的編輯委員會成員。