Bayesian Modeling of Spatio-Temporal Data with R (使用 R 進行時空數據的貝葉斯建模)

Sahu, Sujit

  • 出版商: CRC
  • 出版日期: 2024-05-27
  • 售價: $2,310
  • 貴賓價: 9.5$2,195
  • 語言: 英文
  • 頁數: 434
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032209577
  • ISBN-13: 9781032209579
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems.

Key features of the book:

- Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises

- A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities

- Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc

- Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement

- Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data

- Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science

This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.

商品描述(中文翻譯)

應用科學,包括物理和社會科學,如大氣、生物、氣候、人口、經濟、生態、環境、海洋和政治,通常會收集大量的空間和時空數據,以進行廣泛的推斷和預測。理想情況下,這些推斷任務應通過建模來進行,這有助於估計從這些數據得出的所有結論中的不確定性。統一的貝葉斯建模,通過用戶友好的軟體包實現,為解決具有挑戰性的實際問題提供了關鍵的鑰匙,釋放這些方法的全部潛力。

本書的主要特點:

- 提供對貝葉斯方法和計算大多數方面的可及性詳細討論,並附有實例、數值說明和練習題
- 一章專門針對空間統計術語的解釋,幫助讀者建立詞彙,而不會被建模和技術細節所困擾
- 提供計算和建模的示例,使用專門的 R 套件 bmstdr,讓讀者能夠使用知名的套件和平台,如 rstan、INLA、spBayes、spTimer、spTDyn、CARBayes、CARBayesST 等
- 包含 R 代碼註解,詳細說明用於生成所有表格和圖形的算法,數據和代碼可通過在線補充材料獲得
- 兩章專門討論點參考和面積單位數據的時空建模實際例子
- 全書強調通過將數據分割為測試集和訓練集來驗證模型,遵循機器學習和數據科學的理念

本書旨在使時空建模和分析對廣泛的學生和研究人員群體可及且易於理解,從數學家和統計學家到應用科學的實踐者。它大部分建模是通過專門開發的 R 套件中的 R 命令來實現,以促進時空建模。它不妥協於嚴謹性,因為它在獨立章節中呈現貝葉斯推斷和計算的基本理論,這將吸引對理論細節感興趣的讀者。通過避免艱深的數學和微積分,本書旨在成為一座橋樑,消除應用科學家之間的統計知識差距。

作者簡介

Sujit K. Sahu is a Professor of Statistics at the University of Southampton. He has co-authored more than 60 papers on Bayesian computation and modeling of spatio-temporal data. He has also contributed to writing specialist R packages for modeling and analysis of such data.

作者簡介(中文翻譯)

Sujit K. Sahu 是南安普敦大學的統計學教授。他共同撰寫了超過 60 篇有關貝葉斯計算和時空數據建模的論文。他還參與撰寫了專門用於此類數據建模和分析的 R 套件。