Federated AI for Real-World Business Scenarios

Verma, Dinesh C.

  • 出版商: CRC
  • 出版日期: 2024-01-29
  • 售價: $2,600
  • 貴賓價: 9.5$2,470
  • 語言: 英文
  • 頁數: 206
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032049359
  • ISBN-13: 9781032049359
  • 相關分類: 人工智慧
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

This book provides an overview of Federated Learning and how it can be used to build real-world AI-enabled applications. Real-world AI applications frequently have training data distributed in many different locations, with data at different sites having different properties and different formats. In many cases, data movement is not permitted due to security concerns, bandwidth, cost or regulatory restriction. Under these conditions, techniques of federated learning can enable creation of practical applications. Creating practical applications requires implementation of the cycle of learning from data, inferring from data, and acting based on the inference. This book will be the first one to cover all stages of the Learn-Infer-Act cycle, and presents a set of patterns to apply federation to all stages. Another distinct feature of the book is the use of real-world applications with an approach that discusses all aspects that need to be considered in an operational system, including handling of data issues during federation, maintaining compliance with enterprise security policies, and simplifying the logistics of federated AI in enterprise contexts. The book considers federation from a manner agnostic to the actual AI models, allowing the concepts to be applied to all varieties of AI models. This book is probably the first one to cover the space of enterprise AI-based applications in a holistic manner.

商品描述(中文翻譯)

本書提供了對聯邦學習的概述,以及如何利用它來建立真實世界的人工智慧應用程式。真實世界的人工智慧應用程式通常具有分散在許多不同位置的訓練數據,不同位置的數據具有不同的特性和格式。在許多情況下,由於安全問題、頻寬、成本或法規限制,不允許數據移動。在這些條件下,聯邦學習技術可以實現實際應用程式的創建。創建實際應用程式需要實施從數據學習、從數據推斷和根據推斷行動的循環。本書將是第一本涵蓋學習-推斷-行動循環的所有階段的書籍,並提供了一套將聯邦應用於所有階段的模式。本書的另一個獨特之處在於使用真實世界的應用程式,並以一種討論在操作系統中需要考慮的所有方面的方法,包括在聯邦過程中處理數據問題、遵守企業安全政策以及簡化企業環境中的聯邦人工智慧的後勤工作。本書以對實際人工智慧模型不加偏見的方式考慮聯邦,使得這些概念可以應用於各種類型的人工智慧模型。本書可能是第一本以整體方式涵蓋企業基於人工智慧的應用程式領域的書籍。

作者簡介

Dinesh C. Verma is an IBM Fellow, a UK Fellow of the Royal Academy of Engineering and an IEEE Fellow. He leads the Distributed AI area at IBM Watson Research Center. He has authored ten books, 150+ technical papers and been granted 185+ U.S. patents. He has led an international consortium of scientists for fifteen years, and supervised many business solutions using AI. More details about Dinesh are available at ibm.biz/dineshverma

作者簡介(中文翻譯)

Dinesh C. Verma是IBM Fellow,英國皇家工程學院的Fellow和IEEE Fellow。他在IBM Watson研究中心負責分散式人工智慧領域。他撰寫了十本書,發表了150多篇技術論文,並獲得了185多項美國專利。他領導了一個國際科學家聯盟長達十五年,並監督了許多使用人工智慧的商業解決方案。有關Dinesh的更多詳細信息,請訪問ibm.biz/dineshverma。