Algebraic Varieties: Minimal Models and Finite Generation
Kawamata, Yujiro, Jiang, Chen
- 出版商: Cambridge
- 出版日期: 2024-06-27
- 售價: $3,130
- 貴賓價: 9.5 折 $2,974
- 語言: 英文
- 頁數: 257
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1009344676
- ISBN-13: 9781009344678
海外代購書籍(需單獨結帳)
相關主題
商品描述
The finite generation theorem is a major achievement of modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic zero is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by Birkar-Cascini-Hacon-McKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend and break method, vanishing theorems, positivity theorems and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.
商品描述(中文翻譯)
有限生成定理是現代代數幾何學的一項重要成就。基於極小模型理論,該定理指出在特徵為零的域上定義的代數多樣性的規範環是一個有限生成的分級環。這本研究生級的教材是第一本解釋這個證明的書籍。它涵蓋了過去30年來在極小模型理論上的進展,最終以Birkar-Cascini-Hacon-McKernan的有限生成里程碑論文為結尾。作者在這個證明之前介紹了重要的結果和技巧,這些結果和技巧現在已經成為有理幾何學的標準工具箱的一部分,包括Mori的彎曲和破壞方法、消失定理、正性定理和Siu對乘法理想層的分析。本書假設讀者只具備代數幾何的基礎知識,並以自包含的解釋術語和定理來降低先備知識的要求。