Parallel Processing for Scientific Computing
暫譯: 科學計算的並行處理
Michael A. Heroux, Padma Raghavan, Horst D. Simon
- 出版商: Society for Industri
- 出版日期: 2007-03-31
- 售價: $1,700
- 貴賓價: 9.8 折 $1,666
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 0898716195
- ISBN-13: 9780898716191
下單後立即進貨 (約5~7天)
相關主題
商品描述
Description
Software, Environments, and Tools 20
Scientific computing has often been called the third approach to scientific discovery, emerging as a peer to experimentation and theory. Historically, the synergy between experimentation and theory has been well understood: experiments give insight into possible theories, theories inspire experiments, experiments reinforce or invalidate theories, and so on. As scientific computing has evolved to produce results that meet or exceed the quality of experimental and theoretical results, it has become indispensable.
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them.
Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
This edited volume serves as an up-to-date reference for researchers and application developers on the state of the art in scientific computing. It also serves as an excellent overview and introduction, especially for graduate and senior-level undergraduate students interested in computational modeling and simulation and related computer science and applied mathematics aspects.
Table of Contents
Contents List of Figures; List of Tables; Preface; Chapter 1: Frontiers of Scientific Computing: An Overview; Part I: Performance Modeling, Analysis and Optimization. Chapter 2: Performance Analysis: From Art to Science; Chapter 3: Approaches to Architecture-Aware Parallel Scientific Computation; Chapter 4: Achieving High Performance on the BlueGene/L Supercomputer; Chapter 5: Performance Evaluation and Modeling of Ultra-Scale Systems; Part II: Parallel Algorithms and Enabling Technologies. Chapter 6: Partitioning and Load Balancing; Chapter 7: Combinatorial Parallel and Scientific Computing; Chapter 8: Parallel Adaptive Mesh Refinement; Chapter 9: Parallel Sparse Solvers, Preconditioners, and Their Applications; Chapter 10: A Survey of Parallelization Techniques for Multigrid Solvers; Chapter 11: Fault Tolerance in Large-Scale Scientific Computing; Part III: Tools and Frameworks for Parallel Applications. Chapter 12: Parallel Tools and Environments: A Survey; Chapter 13: Parallel Linear Algebra Software; Chapter 14: High-Performance Component Software Systems; Chapter 15: Integrating Component-Based Scientific Computing Software; Part IV: Applications of Parallel Computing. Chapter 16: Parallel Algorithms for PDE-Constrained Optimization; Chapter 17: Massively Parallel Mixed-Integer Programming; Chapter 18: Parallel Methods and Software for Multicomponent Simulations; Chapter 19: Parallel Computational Biology; Chapter 20: Opportunities and Challenges for Parallel Computing in Science and Engineering; Index.
商品描述(中文翻譯)
**描述**
科學計算通常被稱為科學發現的第三種方法,與實驗和理論並駕齊驅。歷史上,實驗與理論之間的協同作用已經被很好地理解:實驗提供了對可能理論的洞察,理論激發了實驗,實驗強化或駁斥理論,等等。隨著科學計算的發展,產生的結果達到或超過實驗和理論結果的質量,它已變得不可或缺。
並行處理在科學計算中已經是一項超過20年的促進技術。本書是10年來對並行計算的首次深入討論;它反映了數學家、計算機科學家和計算科學家專注於使並行處理對科學問題有效的主題的混合。目前,並行處理對科學計算的影響在不同學科之間差異很大,但在大多數問題領域中,它扮演著至關重要的角色,並在許多領域中是絕對必要的。
《科學計算的並行處理》分為四個部分:第一部分涉及性能建模、分析和優化;第二部分專注於針對許多建模和模擬應用中常見問題的並行算法和軟體;第三部分強調可以簡化和增強應用開發過程的工具和環境;第四部分提供了一些需要並行計算以擴展到解決更大和更現實模型的應用示例,這些模型可以推進科學和工程。
這本編輯的著作作為科學計算最新技術的參考資料,為研究人員和應用開發者提供了最新的資訊。它也作為一個優秀的概述和介紹,特別適合對計算建模和模擬及相關計算機科學和應用數學方面感興趣的研究生和高年級本科生。
**目錄**
內容 圖表清單;表格清單;前言;第一章:科學計算的前沿:概述;第一部分:性能建模、分析和優化。第二章:性能分析:從藝術到科學;第三章:架構感知的並行科學計算方法;第四章:在 BlueGene/L 超級計算機上實現高性能;第五章:超大規模系統的性能評估和建模;第二部分:並行算法和促進技術。第六章:分區和負載平衡;第七章:組合並行和科學計算;第八章:並行自適應網格細化;第九章:並行稀疏求解器、預處理器及其應用;第十章:多重網格求解器的並行化技術調查;第十一章:大規模科學計算中的容錯;第三部分:並行應用的工具和框架。第十二章:並行工具和環境:調查;第十三章:並行線性代數軟體;第十四章:高性能組件軟體系統;第十五章:整合基於組件的科學計算軟體;第四部分:並行計算的應用。第十六章:PDE約束優化的並行算法;第十七章:大規模並行混合整數編程;第十八章:多組件模擬的並行方法和軟體;第十九章:並行計算生物學;第二十章:科學和工程中並行計算的機會與挑戰;索引。