相關主題
商品描述
This research and reference text explores the finer details of Deep Learning models. It provides a brief outline on popular models including convolution neural networks (CNN), deep belief networks (DBN), autoencoders, residual neural networks (Res Nets). The text discusses some of the Deep Learning-based applications in gene identification. Sections in the book explore the foundation and necessity of deep learning in radiology, the application of deep learning in the area of cardiovascular imaging and deep learning applications in the area of fatty liver disease characterization and COVID19, respectively.
This reference text is highly relevant for medical professionals and researchers in the area of AI in medical imaging.
Key Features:
- Discusses various diseases related to lung, heart, peripheral arterial imaging, as well as gene expression characterization and classification
- Explores imaging applications, their complexities and the Deep Learning models employed to resolve them in detail
- Provides state-of-the-art contributions while addressing doubts in multimodal research
- Details the future of deep learning and big data in medical imaging
商品描述(中文翻譯)
這本研究和參考書籍探討了深度學習模型的細節。它簡要介紹了一些流行的模型,包括卷積神經網絡(CNN)、深度信念網絡(DBN)、自編碼器和殘差神經網絡(Res Nets)。該書討論了一些基於深度學習的基因識別應用。書中的章節探討了深度學習在放射學基礎和必要性、心血管影像學以及脂肪肝疾病特徵和COVID19領域的應用。
這本參考書對於醫學影像人員和人工智慧醫學領域的研究人員非常相關。
主要特點:
- 討論了與肺部、心臟、周邊動脈影像相關的各種疾病,以及基因表達特徵和分類
- 詳細探討了影像應用、其複雜性以及所使用的深度學習模型
- 提供了最新的研究成果,同時解答了多模態研究中的疑問
- 詳細介紹了深度學習和大數據在醫學影像領域的未來發展。