Statistical Analysis of Stochastic Processes in Time
暫譯: 時間隨機過程的統計分析
J. K. Lindsey
- 出版商: Cambridge
- 出版日期: 2004-08-02
- 售價: $2,150
- 貴賓價: 9.8 折 $2,107
- 語言: 英文
- 頁數: 338
- 裝訂: Hardcover
- ISBN: 0521837413
- ISBN-13: 9780521837415
-
相關分類:
機率統計學 Probability-and-statistics
已絕版
買這商品的人也買了...
-
$680$578 -
$980$833 -
$650$514 -
$590$466 -
$1,100$1,078 -
$990$782 -
$1,120$1,098 -
$650$553 -
$1,170$1,112 -
$660$561 -
$680$578 -
$520$406 -
$780$663 -
$550$468 -
$2,100$1,995 -
$450$351 -
$490$387 -
$450$351 -
$550$523 -
$480$374 -
$720$569 -
$650$553 -
$490$387 -
$960$816 -
$490$387
商品描述
Description
Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. Much theoretical work has been done but virtually no modern books are available to show how the results can be applied. This book fills that gap by introducing practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
• Covers stochastic processes needed by research scientists and students with many practical examples and exercises
• Treats applications in a wide variety of disciplines
• R code, data sets and worked examples provided free on author’s website
Table of Contents
Preface; Part I. Basic Principles: 1. What is a stochastic process?; 2. Normal theory models and extensions; Part II. Categorical State Space: 3. Survival processes; 4. Recurrent events; 5. Discrete-time Markov chains; 6. Event histories; 7. Dynamics models; 8. More complex dependencies; Part III. Continuous State Space: 9. Time series; 10. Growth curves; 11. Dynamic models; 12. Repeated measurements; Bibliography; Author index; Subject index.
商品描述(中文翻譯)
**描述**
許多觀察到的現象,從病人的健康變化到股市的數值,都是由隨時間變化的量所特徵化:隨機過程旨在研究這些現象。雖然已有大量理論工作,但幾乎沒有現代書籍能展示如何應用這些結果。本書填補了這一空白,通過介紹將隨機過程應用於僅具備基本統計知識的讀者的實用方法。它涵蓋了該主題的幾乎所有方面,並以易於理解的形式呈現理論,並通過許多例子來強調這些理論。這些例子來自社會學、醫學到工程等數十個領域。書中還附有練習題集,使其適合用於隨機過程的入門課程。提供的軟體(可從 www.cambridge.org 獲得)可供讀者應用於所有呈現的模型,並且是免費的 R 系統。
• 涵蓋研究科學家和學生所需的隨機過程,並提供許多實用的例子和練習
• 涉及多種學科的應用
• R 代碼、數據集和已解題例子可在作者網站上免費獲得
**目錄**
前言;第一部分 基本原則:1. 什麼是隨機過程?;2. 正態理論模型及其擴展;第二部分 類別狀態空間:3. 生存過程;4. 重複事件;5. 離散時間馬可夫鏈;6. 事件歷史;7. 動態模型;8. 更複雜的依賴性;第三部分 連續狀態空間:9. 時間序列;10. 增長曲線;11. 動態模型;12. 重複測量;參考文獻;作者索引;主題索引。