Graphical Models : Methods for Data Analysis and Mining (Hardcover)
暫譯: 圖形模型:數據分析與挖掘方法(精裝版)

Christian Borgelt, Rudolf Kruse

  • 出版商: Wiley
  • 出版日期: 2002-03-15
  • 售價: $980
  • 貴賓價: 9.8$960
  • 語言: 英文
  • 頁數: 368
  • 裝訂: Hardcover
  • ISBN: 0470843373
  • ISBN-13: 9780470843376
  • 相關分類: Data Science
  • 無法訂購

買這商品的人也買了...

相關主題

商品描述

The use of graphical models in applied statistics has increased considerably over recent years and the theory has been greatly developed and extended. This book provides a self-contained introduction to the learning of graphical models from data, and includes detailed coverage of possibilistic networks - a tool that allows the user to infer results from problems with imprecise data.

One of the most important applications of graphical modelling today is data mining - the data-driven discovery and modelling of hidden patterns in large data sets. The techniques described have a wide range of industrial applications, and a quality testing programme at a major car manufacturer is included as a real-life example.

  • Provides a self-contained introduction to learning relational, probabilistic and possibilistic networks from data.

  • Each concept is carefully explained and illustrated by examples.

  • Contains all necessary background material, including modelling under uncertainty, decomposition of distributions, and graphical representation of decompositions.

  • Features applications of learning graphical models from data, and problems for further research.

  • Includes a comprehensive bibliography.

Graphical Models: Methods for Data Analysis and Mining will be invaluable to researchers and practitioners who use graphical models in their work. Graduate students of applied statistics, computer science and engineering will find this book provides an excellent introduction to the subject

Table of Contents

Preface.

Introduction.

Imprecision and Uncertainty.

Decomposition.

Graphical Representation.

Computing Projections.

Naive Classifiers.

Learning Global Structure.

Learning Local Structure.

Inductive Causation.

Applications.

A. Proofs of Theorems.

B. Software Tools.

Bibliography.

Index.

商品描述(中文翻譯)

應用統計中圖形模型的使用在近幾年顯著增加,相關理論也得到了極大的發展和擴展。本書提供了一個自成體系的介紹,講解如何從數據中學習圖形模型,並詳細涵蓋了可能性網絡(possibilistic networks)——這是一種允許用戶從不精確數據問題中推斷結果的工具。

當前圖形建模最重要的應用之一是數據挖掘——基於數據的發現和建模大型數據集中的隱藏模式。所描述的技術具有廣泛的工業應用,並且包括了一個主要汽車製造商的質量測試計劃作為實際案例。

- 提供一個自成體系的介紹,講解如何從數據中學習關聯網絡、概率網絡和可能性網絡。
- 每個概念都經過仔細解釋並用例子進行說明。
- 包含所有必要的背景材料,包括不確定性下的建模、分佈的分解以及分解的圖形表示。
- 特別介紹從數據中學習圖形模型的應用,以及進一步研究的問題。
- 包含一份全面的參考書目。

《圖形模型:數據分析與挖掘的方法》將對使用圖形模型的研究人員和實踐者非常有價值。應用統計、計算機科學和工程的研究生將會發現本書提供了該主題的優秀入門。

**目錄**

前言。

介紹。

不精確性與不確定性。

分解。

圖形表示。

計算投影。

天真分類器。

學習全局結構。

學習局部結構。

歸納因果關係。

應用。

A. 定理的證明。

B. 軟體工具。

參考書目。

索引。