Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application
暫譯: 基於深度與廣度森林回歸的小樣本建模:理論與工業應用
Yu, Wen, Tang, Jian, Qiao, Junfei
- 出版商: Academic Press
- 出版日期: 2025-10-31
- 售價: $6,270
- 貴賓價: 9.5 折 $5,957
- 語言: 英文
- 頁數: 352
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443315647
- ISBN-13: 9780443315640
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application delves into tree-structured methods in the industrial sector, encompassing classical ensemble learning, tree-structured deep forest classification, and broad learning systems with neural networks. It introduces an innovative deep/broad learning algorithm for small-sample industrial modeling tasks. The book is divided into two parts: methodology and practical application in dioxin emission modeling. Methodology sections include Preliminaries, Deep Forest Regression, Broad Forest Regression, and Fuzzy Forest Regression. The application part focuses on modeling dioxin emissions in municipal solid waste incineration. Throughout, various tree-structured strategies are presented, and the authors provide software systems for validating these methods. This book is suitable for advanced undergraduates, graduate engineering students, and practicing engineers looking for self-study resources.
商品描述(中文翻譯)
《基於深度與廣度森林回歸的小樣本建模:理論與工業應用》深入探討了工業領域中的樹狀方法,包括經典的集成學習、樹狀深度森林分類以及結合神經網絡的廣度學習系統。它介紹了一種創新的深度/廣度學習算法,用於小樣本工業建模任務。本書分為兩個部分:方法論和二噁英排放建模的實際應用。方法論部分包括初步知識、深度森林回歸、廣度森林回歸和模糊森林回歸。應用部分專注於市政固體廢物焚燒中的二噁英排放建模。在整個過程中,提出了各種樹狀策略,作者還提供了驗證這些方法的軟體系統。本書適合高年級本科生、研究生工程學生以及尋找自學資源的在職工程師。