Federated Learning for Medical Imaging: Principles, Algorithms, and Applications
暫譯: 醫療影像的聯邦學習:原則、演算法與應用
Li, Xiaoxiao, Xu, Ziyue, Fu, Huazhu
- 出版商: Academic Press
- 出版日期: 2025-03-01
- 售價: $4,930
- 貴賓價: 9.5 折 $4,684
- 語言: 英文
- 頁數: 230
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443236410
- ISBN-13: 9780443236419
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
Federated Learning for Medical Imaging: Principles, Algorithms, and Applications gives a deep understanding of the technology of federated learning (FL), the architecture of a federated system, and the algorithms for FL. It shows how FL allows multiple medical institutes to collaboratively train and use a precise machine learning (ML) model without sharing private medical data via practical implantation guidance. The book includes real-world case studies and applications of FL, demonstrating how this technology can be used to solve complex problems in medical imaging. The book also provides an understanding of the challenges and limitations of FL for medical imaging, including issues related to data and device heterogeneity, privacy concerns, synchronization and communication, etc.
This book is a complete resource for computer scientists and engineers, as well as clinicians and medical care policy makers, wanting to learn about the application of federated learning to medical imaging.
商品描述(中文翻譯)
《醫學影像的聯邦學習:原則、演算法與應用》深入探討聯邦學習(Federated Learning, FL)技術、聯邦系統的架構以及FL的演算法。書中展示了FL如何使多個醫療機構能夠協作訓練和使用精確的機器學習(Machine Learning, ML)模型,而無需共享私人醫療數據,並提供實用的實施指導。該書包含了現實世界的案例研究和FL的應用,展示了這項技術如何用於解決醫學影像中的複雜問題。書中還提供了對於醫學影像中FL的挑戰和限制的理解,包括與數據和設備異質性、隱私問題、同步和通信等相關的問題。
本書是計算機科學家和工程師,以及臨床醫生和醫療政策制定者了解聯邦學習在醫學影像應用的完整資源。