Understanding Elections through Statistics: Polling, Prediction, and Testing
暫譯: 透過統計理解選舉:民調、預測與測試

Forsberg, Ole J.

  • 出版商: CRC
  • 出版日期: 2020-11-03
  • 售價: $6,820
  • 貴賓價: 9.5$6,479
  • 語言: 英文
  • 頁數: 225
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367895374
  • ISBN-13: 9780367895372
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Elections are random events. From individuals deciding whether to vote, to people deciding for whom to vote, to election authorities deciding what to count, the outcomes of competitive democratic elections are rarely known until election day...or beyond. Understanding Elections through Statistics: Polling, Prediction, and Testing explores this random phenomenon from two points of view: predicting the election outcome using opinion polls and testing the election outcome using government-reported data.

Written for those with only a brief introduction to statistics, this book takes you on a statistical journey from how polls are taken to how they can--and should--be used to estimate current popular opinion. Once an understanding of the election process is built, we turn toward testing elections for evidence of unfairness. While holding elections has become the de facto proof of government legitimacy, those electoral processes may hide a dirty little secret of the government illicitly ensuring a favorable election outcome.

This book includes these features designed to make your statistical journey more enjoyable:

  • Vignettes of elections, including maps, to provide concrete bases for the material
  • In-chapter cues to help one avoid the heavy math--or to focus on it
  • End-of-chapter problems designed to review and extend that which was covered in the chapter
  • Many opportunities to turn the power of the R statistical environment to the enclosed election data files, as well as to those you find interesting

From these features, it is clear the audience for this book is quite diverse. This text provides mathematics for those interested in mathematics, but also offers detours for those who just want a good read and a deeper understanding of elections.

Author

Ole J. Forsberg holds PhDs in both political science and statistics. He currently teaches mathematics and statistics in the Department of Mathematics at Knox College in Galesburg, IL.

商品描述(中文翻譯)

選舉是隨機事件。從個人決定是否投票,到人們決定投給誰,再到選舉機構決定計算什麼,競爭性民主選舉的結果在選舉日之前或之後通常是未知的。透過統計理解選舉:民調、預測與測試從兩個角度探討這一隨機現象:使用民意調查預測選舉結果,以及使用政府報告的數據測試選舉結果。

本書是為那些對統計學只有簡單介紹的讀者所寫,帶領讀者從民調的進行方式到如何—以及應該—使用這些民調來估計當前的民意。一旦建立了對選舉過程的理解,我們將轉向測試選舉以尋找不公平的證據。雖然舉行選舉已成為政府合法性的事實上證明,但這些選舉過程可能隱藏著一個骯髒的小秘密,即政府非法確保有利的選舉結果。

本書包含以下特點,旨在使您的統計之旅更加愉快:


  • 選舉的短篇故事,包括地圖,以提供具體的材料基礎

  • 章節內提示,幫助讀者避免繁重的數學—或專注於它

  • 章末問題,旨在回顧和擴展章節中所涵蓋的內容

  • 許多機會將R統計環境的力量應用於附帶的選舉數據文件,以及您覺得有趣的數據

從這些特點可以看出,本書的讀者群相當多樣化。這本書為對數學感興趣的人提供數學知識,但也為那些只想閱讀好書並深入理解選舉的人提供了旁路。

作者

Ole J. Forsberg

擁有政治學和統計學的博士學位。他目前在伊利諾伊州蓋爾斯堡的諾克斯學院數學系教授數學和統計學。

作者簡介

Ole J. Forsberg, BS, MAT, MA, MSE, PhDd, is an Assistant Professor of Mathematics-Statistics at Knox College in Galesburg, IL. He received a PhD in Political Science at the University of Tennessee-Knoxville in 2006, concentrating in International Relations, War, and Terrorism. After finishing his dissertation, Dr Forsberg began a deeper investigation of the statistical techniques he used. As a result of that embarrassment, Dr Forsberg began statistical studies at the Johns Hopkins University (MSE, 2010) and concluded them with a PhD in Statistics from Oklahoma State University in 2014. His dissertation explored and applied applications of statistical techniques to testing elections for violations of the "free and fair" democratic claim. His research agenda lies in extending and applying statistical methods to modeling elections and testing the results for evidence of bias in election results.

作者簡介(中文翻譯)

奧勒·J·福斯伯格(Ole J. Forsberg),學士、碩士、碩士、工程碩士、博士,是伊利諾伊州蓋爾斯堡的諾克斯學院(Knox College)數學統計助理教授。他於2006年在田納西州立大學-諾克斯維爾(University of Tennessee-Knoxville)獲得政治學博士學位,專注於國際關係、戰爭和恐怖主義。在完成論文後,福斯伯格博士開始深入研究他所使用的統計技術。由於這種尷尬,福斯伯格博士在約翰霍普金斯大學(Johns Hopkins University)開始了統計學的研究(工程碩士,2010年),並於2014年在俄克拉荷馬州立大學(Oklahoma State University)獲得統計學博士學位。他的論文探討並應用統計技術於檢測選舉是否違反「自由和公正」的民主主張。他的研究計畫在於擴展和應用統計方法來建模選舉並檢測結果,以尋找選舉結果中的偏見證據。