Data Analysis: A Bayesian Tutorial, 2/e (Paperback)
暫譯: 數據分析:貝葉斯教程,第二版(平裝本)

Devinderjit Sivia, John Skilling

買這商品的人也買了...

商品描述

Description

Statistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis.

This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. Other topics covered include reliability analysis, multivariate optimization, least-squares and maximum likelihood, error-propagation, hypothesis testing, maximum entropy and experimental design.

 

 

 

Table of Contents

1. The Basics , Sivia
2. Parameter Estimation I , Sivia
3. Parameter Estimation II , Sivia
4. Model Selection , Sivia
5. Assigning Probabilities , Sivia
6. Non-parametric Estimation , Sivia
7. Experimental Design , Sivia
8. Least-Squares Extensions , Sivia
9. Nested Sampling , Skilling
10. Quantification , Skilling
Appendices
Bibliography

商品描述(中文翻譯)

**描述**

統計學講座對於幾代學生來說一直是困惑和挫折的來源。本書試圖通過闡述一種邏輯且統一的數據分析整體方法來改善這種情況。

本書旨在作為科學和工程領域的高年級本科生及研究生的教程指南。在解釋貝葉斯概率理論的基本原則後,通過從基本參數估計到影像處理的各種範例來說明其應用。其他涵蓋的主題包括可靠性分析、多變量優化、最小二乘法和最大似然法、誤差傳播、假設檢驗、最大熵和實驗設計。

**目錄**

1. 基礎知識,Sivia
2. 參數估計 I,Sivia
3. 參數估計 II,Sivia
4. 模型選擇,Sivia
5. 機率分配,Sivia
6. 非參數估計,Sivia
7. 實驗設計,Sivia
8. 最小二乘法擴展,Sivia
9. 嵌套取樣,Skilling
10. 量化,Skilling
附錄
參考文獻