Machine Learning with Python for Everyone
暫譯: 人人都能學會的 Python 機器學習
Fenner, Mark
- 出版商: Addison Wesley
- 出版日期: 2019-08-16
- 定價: $1,800
- 售價: 9.5 折 $1,710
- 語言: 英文
- 頁數: 592
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0134845625
- ISBN-13: 9780134845623
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習 Python 版 (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
Docker 編配的奧義 (Orchestrating Docker)$280$218 -
$556ANSYS FLUENT 16.0 超級學習手冊 -
$1,617Deep Learning (Hardcover) -
振動學, 2/e$500$490 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
用 Javascript 一統前後端:御用語言 Node.js 出巡 Web$490$417 -
Python 也可以這樣學$580$452 -
Docker 這樣學才有趣:從入門,到玩直播、挖礦$450$356 -
Python:期貨演算法交易實務 121個關鍵技巧詳解$500$390 -
Lua 程序設計, 4/e (Programming in Lua, 4/e)$534$507 -
$1,320Java: The Complete Reference, Eleventh Edition (Complete Reference Series) -
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2/e (Paperback)$2,530$2,404 -
$2,081Python for Programmers: with Big Data and Artificial Intelligence Case Studies (Paperback) -
Python by Example: Learning to Program in 150 Challenges$1,240$1,178 -
Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence (Paperback)$2,220$2,109 -
Storytelling with Data: Let's Practice!$1,580$1,501 -
Redis 使用手冊$834$792 -
tf.keras 技術者們必讀!深度學習攻略手冊$1,000$850 -
Data Science and Machine Learning: Mathematical and Statistical Methods$3,980$3,781 -
PyTorch 深度學習入門與應用:必備實作知識與工具一本就學會$600$468 -
圖解馬達一本通:輕鬆掌握電機核心的馬達原理與構造$360$284 -
$370ANSYS Workbench 結構與流體實例應用 -
AI 加持!Google Sheets 超級工作流$599$473 -
寫程式的 AI 戰友 – VS Code x GitHub Copilot$720$569 -
Google Cloud 從雲端小白到黑帶高手!雲端架構設計、實戰操作、證照攻略與轉職指南$680$530
相關主題
商品描述
The Complete Beginner's Guide to Understanding and Building Machine Learning Systems with Python
Machine Learning with Python for Everyone will help you master the processes, patterns, and strategies you need to build effective learning systems, even if you're an absolute beginner. If you can write some Python code, this book is for you, no matter how little college-level math you know. Principal instructor Mark E. Fenner relies on plain-English stories, pictures, and Python examples to communicate the ideas of machine learning.
Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you'll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field's most sophisticated and exciting techniques. Whether you're a student, analyst, scientist, or hobbyist, this guide's insights will be applicable to every learning system you ever build or use.
- Understand machine learning algorithms, models, and core machine learning concepts
- Classify examples with classifiers, and quantify examples with regressors
- Realistically assess performance of machine learning systems
- Use feature engineering to smooth rough data into useful forms
- Chain multiple components into one system and tune its performance
- Apply machine learning techniques to images and text
- Connect the core concepts to neural networks and graphical models
- Leverage the Python scikit-learn library and other powerful tools
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
商品描述(中文翻譯)
《完整初學者指南:理解與構建使用 Python 的機器學習系統》
《人人都能學的 Python 機器學習》將幫助你掌握構建有效學習系統所需的過程、模式和策略,即使你是完全的初學者。如果你能寫一些 Python 代碼,這本書就是為你而寫,無論你對大學數學的了解有多淺。主要講師 Mark E. Fenner 依賴於通俗易懂的故事、圖片和 Python 範例來傳達機器學習的概念。
Mark 首先討論機器學習及其能做什麼;以易於接近的方式介紹關鍵的數學和計算主題;並引導你完成構建、訓練和評估學習系統的第一步。一步一步地,你將填充實用學習系統的組件,擴展你的工具箱,並探索該領域一些最複雜和令人興奮的技術。無論你是學生、分析師、科學家還是愛好者,本指南的見解都將適用於你所構建或使用的每一個學習系統。
- 理解機器學習算法、模型和核心機器學習概念
- 使用分類器對範例進行分類,並使用回歸器對範例進行量化
- 實際評估機器學習系統的性能
- 使用特徵工程將粗糙數據轉化為有用的形式
- 將多個組件鏈接成一個系統並調整其性能
- 將機器學習技術應用於圖像和文本
- 將核心概念與神經網絡和圖形模型相連接
- 利用 Python 的 scikit-learn 庫和其他強大工具
*註冊你的書籍以便方便訪問下載、更新和/或修正,詳情請參見書內。*
作者簡介
Dr. Mark Fenner, owner of Fenner Training and Consulting, LLC, has taught computing and mathematics to diverse adult audiences since 1999, and holds a PhD in computer science. His research has included design, implementation, and performance of machine learning and numerical algorithms; developing learning systems to detect user anomalies; and probabilistic modeling of protein function.
作者簡介(中文翻譯)
馬克·芬納博士,Fenner Training and Consulting, LLC 的擁有者,自1999年以來一直教授計算機和數學給各種成人觀眾,並擁有計算機科學博士學位。他的研究包括機器學習和數值算法的設計、實現和性能;開發檢測用戶異常的學習系統;以及蛋白質功能的概率建模。
